期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Singularity analysis and avoidance for an SSRMS-type reconfigurable space manipulator with a non-spherical wrist and two lockable passive telescopic links
1
作者 Zhiyuan ZHAO Xiaohang YANG +3 位作者 Yuntao LI Zichun XU Jingdong ZHAO Hong LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第8期435-459,共25页
This study focuses on addressing kinematic singularity analysis and avoidance issues for a space station remote manipulator system(SSRMS)-type reconfigurable space manipulator.The manipulator is equipped with a non-sp... This study focuses on addressing kinematic singularity analysis and avoidance issues for a space station remote manipulator system(SSRMS)-type reconfigurable space manipulator.The manipulator is equipped with a non-spherical wrist and two lockable passive telescopic links(LPTLs),which enable it to have both active revolute and passive prismatic joints and operate in two distinct modes.To begin with the kinematic singularity analysis,the study derives the differential kinematic equations for the manipulator and identifies the dominant Jacobian matrix that causes singularities.Subsequently,an in-depth analysis of singularities from multiple perspectives is conducted.Firstly,a kinematic singularity map method is proposed to capture the distribution of singularities within the reachable workspace.Then,the influence of the two LPTLs on singularities is thoroughly examined.Finally,a new method based on the matrix rank equivalence principle is introduced to determine singularity conditions,enabling the identification of all the singular configurations for the SSRMS-type reconfigurable manipulator.Notably,this method significantly reduces computational complexity,and the singularity conditions obtained have more concise equations.For the singularity avoidance problem,a novel method is developed,which simultaneously addresses the requirements of real-time performance,high precision,and the avoidance of both kinematic singularities and joint limit constraints.Benefiting from these excellent properties,the proposed method can effectively resolve the singularity issues encountered separately by the SSRMS-type reconfigurable manipulator in its two operational modes.Several typical simulations validate the utility of all the proposed methods. 展开更多
关键词 Reconfigurable space manipulator Redundant manipulator Kinematics singularity analysis singularity avoidance
原文传递
Base placement optimization of a mobile hybrid machining robot by stiffness analysis considering reachability and nonsingularity constraints
2
作者 Zhongyang ZHANG Juliang XIAO +1 位作者 Haitao LIU Tian HUANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第11期398-416,共19页
The mobile hybrid machining robot has a very bright application prospect in the field of high-efficiency and high-precision machining of large aerospace structures.However,an inappropriate base placement may make the ... The mobile hybrid machining robot has a very bright application prospect in the field of high-efficiency and high-precision machining of large aerospace structures.However,an inappropriate base placement may make the robot encounter a singular configuration,or even fail to complete the entire machining task due to unreachability.In addition to considering the two constraints of reachability and non-singularity,this paper also optimizes the robot base placement with stiffness as the goal to improve the machining quality.First of all,starting from the structure of the robot,the reachability and nonsingularity constraints are transformed into a simple geometric constraint imposed on the base placement:feasible base placement area.Then,genetic algorithm is used to search for the base placement with near optimal stiffness(near optimal base placement for short)in the feasible base placement area.Finally,multiple controlled experiments were carried out by taking the milling of a protuberance on the spacecraft cabin as an example.It is found that the calculated optimal base placement meets all the constraints and that the machining quality was indeed improved.In addition,compared with simple genetic algorithm,it is proved that the feasible base placement area method can shorten the running time of the whole program. 展开更多
关键词 Aerospace industry Base placement optimization Hybrid machining robot Mobile robot Robot application singularity avoidance Stiffness optimization
原文传递
A new steering approach for VSCMGs with high precision 被引量:3
3
作者 Huang Xinghong Jia Yinghong +1 位作者 Xu Shijie Huang Tingxuan 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第6期1673-1684,共12页
A new variable speed control moment gyro(VSCMG) steering law is proposed in order to achieve higher torque precision. The dynamics of VSCMGs is established, and two work modes are then designed according to command to... A new variable speed control moment gyro(VSCMG) steering law is proposed in order to achieve higher torque precision. The dynamics of VSCMGs is established, and two work modes are then designed according to command torque: control momentum gyro(CMG)/reaction wheel(RW) hybrid mode for the large torque case and RW single mode for the small. When working in the CMG/RW hybrid mode, the steering law deals with the gimbal dead-zone nonlinearity through compensation by RW sub-mode. This is in contrast to the conventional CMG singularity avoidance and wheel speed equalization, as well as the proof of definitely hyperbolic singular property of the CMG sub-mode. When working in the RW single mode, the motion of gimbals will be locked. Both the transition from CMG/RW hybrid mode to RW single mode and the reverse are studied. During the transition, wheel speed equalization and singularity avoidance of both the CMG and RW submodes are considered. A steering law for the RWs with locked gimbals is presented. It is shown by simulations that the VSCMGs with this new steering law could reach a better torque precision than the normal CMGs in the case of both large and small torques. 展开更多
关键词 Attitude control Dead-zone nonlinearity Integrated singularity measurement singularity avoidance Variable speed control moment gyros(VSCMGs) Wheel speed equalization
原文传递
Optimal linear attitude estimators via geometric analysis 被引量:1
4
作者 De-ren GONG Xiao-wei SHAO +1 位作者 Wei LI Deng-ping DUAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2011年第11期873-882,共10页
Three optimal linear attitude estimators are proposed for single-point real-time estimation of spacecraft attitude using a geometric approach. The final optimal attitude is represented by modified Rodrigues parameters... Three optimal linear attitude estimators are proposed for single-point real-time estimation of spacecraft attitude using a geometric approach. The final optimal attitude is represented by modified Rodrigues parameters (MRPs). After introducing incidental right-hand orthogonal coordinates for each pair of measured values, three error vectors are obtained by the use of dot or/and cross products. Corresponding optimality criteria are rigorously quadratic and unconstrained, which do not coincide with Wahba's constrained criterion. The singularity, which occurs when the principal angle is close to n, can be easily avoided by one proper rotation. Numerical simulations show that the proposed three optimal linear estimators can provide a precision comparable with those complying with the Wahba optimality definition, and have faster computational speed than the famous quatemion estimator (QUEST). 展开更多
关键词 Linear attitude determination Geometric analysis Gibbs vector singularity avoidance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部