In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered in...In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered interval, but also point of discontinuity and linear functionals is investigated. So, the problem is not pure boundary-value. The authors single out a class of linear functionals and find simple algebraic conditions on coefficients, which garantee the existence of infinit number eigenvalues. Also the asymptotic formulas for eigenvalues are found.展开更多
Weak solution (or generalized solution) for the boundary-value problems of partial differential equations of elasticity of 3D (three-dimensional) quasicrystals is given, in which the matrix expression is used. In ...Weak solution (or generalized solution) for the boundary-value problems of partial differential equations of elasticity of 3D (three-dimensional) quasicrystals is given, in which the matrix expression is used. In terms of Korn inequality and theory of function space, we prove the uniqueness of the weak solution. This gives an extension of existence theorem of solution for classical elasticity to that of quasicrystals, and develops the weak solution theory of elasticity of 2D quasicrystals given by the second author of the paper and his students.展开更多
By using the fixed point theorem under the case structure, we study the existence of sign-changing solutions of A class of second-order differential equations three-point boundary-value problems, and a positive soluti...By using the fixed point theorem under the case structure, we study the existence of sign-changing solutions of A class of second-order differential equations three-point boundary-value problems, and a positive solution and a negative solution are obtained respectively, so as to popularize and improve some results that have been known.展开更多
Let stand for the polar coordinates in R2, ?be a given constant while satisfies the Laplace equation in the wedge-shaped domain or . Here αj(j = 1,2,...,n + 1) denote certain angles such that αj αj(j = 1,2,...,n + ...Let stand for the polar coordinates in R2, ?be a given constant while satisfies the Laplace equation in the wedge-shaped domain or . Here αj(j = 1,2,...,n + 1) denote certain angles such that αj αj(j = 1,2,...,n + 1). It is known that if r = a satisfies homogeneous boundary conditions on all boundary lines ?in addition to non-homogeneous ones on the circular boundary , then an explicit expression of in terms of eigen-functions can be found through the classical method of separation of variables. But when the boundary?condition given on the circular boundary r = a is homogeneous, it is not possible to define a discrete set of eigen-functions. In this paper one shows that if the homogeneous condition in question is of the Dirichlet (or Neumann) type, then the logarithmic sine transform (or logarithmic cosine transform) defined by (or ) may be effective in solving the problem. The inverses of these transformations are expressed through the same kernels on or . Some properties of these transforms are also given in four theorems. An illustrative example, connected with the heat transfer in a two-part wedge domain, shows their effectiveness in getting exact solution. In the example in question the lateral boundaries are assumed to be non-conducting, which are expressed through Neumann type boundary conditions. The application of the method gives also the necessary condition for the solvability of the problem (the already known existence condition!). This kind of problems arise in various domain of applications such as electrostatics, magneto-statics, hydrostatics, heat transfer, mass transfer, acoustics, elasticity, etc.展开更多
This note is concerned with an iterative method for the solution of singular boundary value problems. It can be considered as a predictor-corrector method. Sufficient conditions for the convergence of the method are i...This note is concerned with an iterative method for the solution of singular boundary value problems. It can be considered as a predictor-corrector method. Sufficient conditions for the convergence of the method are introduced. A number of numerical examples are used to study the applicability of the method.展开更多
In this paper,we develop and analyze a finite difference method for linear second-order stochastic boundary-value problems(SBVPs)driven by additive white noises.First we regularize the noise by the Wong-Zakai approxim...In this paper,we develop and analyze a finite difference method for linear second-order stochastic boundary-value problems(SBVPs)driven by additive white noises.First we regularize the noise by the Wong-Zakai approximation and introduce a sequence of linear second-order SBVPs.We prove that the solution of the SBVP with regularized noise converges to the solution of the original SBVP with convergence order O(h)in the meansquare sense.To obtain a numerical solution,we apply the finite difference method to the stochastic BVP whose noise is piecewise constant approximation of the original noise.The approximate SBVP with regularized noise is shown to have better regularity than the original problem,which facilitates the convergence proof for the proposed scheme.Convergence analysis is presented based on the standard finite difference method for deterministic problems.More specifically,we prove that the finite difference solution converges at O(h)in the mean-square sense,when the second-order accurate three-point formulas to approximate the first and second derivatives are used.Finally,we present several numerical examples to validate the efficiency and accuracy of the proposed scheme.展开更多
The purpose of this paper is to extend some fundamental spectral properties of regular Sturm-Liouville problems to special kind discontinuous boundary value problem, which consist of a Sturm-Liouville equation with pi...The purpose of this paper is to extend some fundamental spectral properties of regular Sturm-Liouville problems to special kind discontinuous boundary value problem, which consist of a Sturm-Liouville equation with piecewise continuous potential together with eigenvalue parameter on the boundary and transmission conditions. The authors suggest their own approach for finding asymptotic approximations formulas for eigenvalues and eigenfunctions of such discontinuous problems.展开更多
The purpose of this article is to extend some spectral properties of regular Sturm- Liouville problems to the special type discontinuous boundary-value problem, which consists of a Sturm-Liouville equation together wi...The purpose of this article is to extend some spectral properties of regular Sturm- Liouville problems to the special type discontinuous boundary-value problem, which consists of a Sturm-Liouville equation together with eigenparameter-dependent boundary conditions and two supplementary transmission conditions. We construct the resolvent operator and Green's function and prove theorems about expansions in terms of eigenfunctions in modified Hilbert space L2[a, b].展开更多
This paper presents a precise method for solving singularly perturbed boundary-value problems with the boundary layer at one end. The method divides the interval evenly and gives a set of algebraic equations in a matr...This paper presents a precise method for solving singularly perturbed boundary-value problems with the boundary layer at one end. The method divides the interval evenly and gives a set of algebraic equations in a matrix form by the precise integration relationship of each segment. Substituting the boundary conditions into the algebraic equations, the coefficient matrix can be transformed to the block tridiagonal matrix. Considering the nature of the problem, an efficient reduction method is given for solving singular perturbation problems. Since the precise integration relationship introduces no discrete error in the discrete process, the present method has high precision. Numerical examples show the validity of the present method.展开更多
The paper is concerned with strongly nonlinear singularly perturbed bound- ary value problems in one dimension.The problems are solved numerically by finite- difference schemes on special meshes which are dense in the...The paper is concerned with strongly nonlinear singularly perturbed bound- ary value problems in one dimension.The problems are solved numerically by finite- difference schemes on special meshes which are dense in the boundary layers.The Bakhvalov mesh and a special piecewise equidistant mesh are analyzed.For the central scheme,error estimates are derived in a discrete L^1 norm.They are of second order and decrease together with the perturbation parameterε.The fourth-order Numerov scheme and the Shishkin mesh are also tested numerically.Numerical results showε-uniform pointwise convergence on the Bakhvalov and Shishkin meshes.展开更多
This paper is concerned with convergence and superconvergence properties of the local discontinuous Galerkin(LDG)method for two-dimensional semilinear second-order elliptic problems of the form−Δu=f(x,y,u)on Cartesia...This paper is concerned with convergence and superconvergence properties of the local discontinuous Galerkin(LDG)method for two-dimensional semilinear second-order elliptic problems of the form−Δu=f(x,y,u)on Cartesian grids.By introducing special GaussRadau projections and using duality arguments,we obtain,under some suitable choice of numerical fuxes,the optimal convergence order in L2-norm of O(h^(p+1))for the LDG solution and its gradient,when tensor product polynomials of degree at most p and grid size h are used.Moreover,we prove that the LDG solutions are superconvergent with an order p+2 toward particular Gauss-Radau projections of the exact solutions.Finally,we show that the error between the gradient of the LDG solution and the gradient of a special Gauss-Radau projection of the exact solution achieves(p+1)-th order superconvergence.Some numerical experiments are performed to illustrate the theoretical results.展开更多
The fabrication of high-precision panels for the compact antenna test range (CATR) with a sandwich construction of two aluminum skin-plates and one aluminum middle plate,which are bonded to two aluminum honeycomb core...The fabrication of high-precision panels for the compact antenna test range (CATR) with a sandwich construction of two aluminum skin-plates and one aluminum middle plate,which are bonded to two aluminum honeycomb core-layers poses a lot of tricky problems. Of them,the force analysis of individual skin-layers and the springback calculation of sandwich are of utmost importance. Under reasonable assumptions,by using Fourier expansion of stress function and power series expansion of deflection function,two boun...展开更多
The nonlocal theory which confiders interatomic long-range interaction in materials is one of the generalized continuum theories which involve the microstructure characteristic of material media. The basic equations o...The nonlocal theory which confiders interatomic long-range interaction in materials is one of the generalized continuum theories which involve the microstructure characteristic of material media. The basic equations of linear, homogeneous, isotropic, nonlocal elastic solids展开更多
In this paper, we study some singular singularly-perturbed boundary-value problem Pε consisting of the differential equations and the boundary conditions where t ∈ [0, 1], 0 <ε ≤ ε0. U, V, H1 and H2 are scalar...In this paper, we study some singular singularly-perturbed boundary-value problem Pε consisting of the differential equations and the boundary conditions where t ∈ [0, 1], 0 <ε ≤ ε0. U, V, H1 and H2 are scalar functions and infinitely differentiable with respect to their variables respectively.Our approach is somewhat similar to those of Chang [2], Shi [6] and Smith [7]. Our main result (Theorem 4) is new and extends the result, in the scalar case, of Shi [6], who dealt with the problem (1) with V(t, x, ε2y, ε) in place of V(t, x, εy, ε). An application of our result is given at the end.展开更多
Significant progress has been made in mixed boundary-value problems associated with three-dimensional(3D) crack and contact analyses of advanced materials featuring more complexities compared to the conventional iso...Significant progress has been made in mixed boundary-value problems associated with three-dimensional(3D) crack and contact analyses of advanced materials featuring more complexities compared to the conventional isotropic elastic materials.These include material anisotropy and multifield coupling,two typical characteristics of most current multifunctional materials.In this paper we try to present a state-of-the-art description of 3D exact/analytical solutions derived for crack and contact problems of elastic solids with both transverse isotropy and multifield coupling in the latest decade by the potential theory method in the spirit of V.I.Fabrikant.whose ingenious breakthrough brings new vigor and vitality to the old research subject of classical potential theory.We are particularly interested in crack and contact problems with certain nonlinear features.Emphasis is also placed on the coupling between the temperature field(or the like) and other physical fields(e.g.,elastic,electric,and magnetic fields).We further highlight the practical significance of 3D contact solutions,in particular in applications related to modern scanning probe microscopes.展开更多
The displacements of the plate are assumed appropriately to derive the solutions of the 3-D Navier equations. And the conditions on the plate's surface are investigated. In the examples, the boundary-value problem...The displacements of the plate are assumed appropriately to derive the solutions of the 3-D Navier equations. And the conditions on the plate's surface are investigated. In the examples, the boundary-value problems of the plate are solved by applying the Navier-equation's solutions and their closed-form solutions are obtained. The results formulated in the present paper satisfy exactly the governing equations and can reflect precisely the boundary effects of complicated distributions on the edge of plates.展开更多
We present a theoretical analysis for fully developed convective beat transfer in a circular tube for power law fluids by assuming that the thermal diffusivity is a function of temperature gradient. The analytical eol...We present a theoretical analysis for fully developed convective beat transfer in a circular tube for power law fluids by assuming that the thermal diffusivity is a function of temperature gradient. The analytical eolution is obtained and the heat transfer behaviour is investigated under a constant heat flux boundary condition. It is shown that the Nusselt number strongly depends on the value of power law index n. The Nusselt number sharply decreases in the range of 0 〈 n 〈 0.1. However, for n 〉 0.5, the Nusselt number decreases monotonically with the increasing n, and for n 〉 20, the values of Nusselt number approach a constant.展开更多
In this paper, a method to construct an analytic-numerical solution for homogeneous parabolic coupled systems with homogeneous boundary conditions of the type ut = Auxx, A1u(o,t) + B1ux(o,t) = 0, A2u(1,t) + B2ux(1,t) ...In this paper, a method to construct an analytic-numerical solution for homogeneous parabolic coupled systems with homogeneous boundary conditions of the type ut = Auxx, A1u(o,t) + B1ux(o,t) = 0, A2u(1,t) + B2ux(1,t) = 0, ot>0, u (x,0) = f(x), where A is a positive stable matrix and A1, B1, B1, B2,? ?are arbitrary matrices for which the block matrix is non-singular, is proposed.展开更多
In this paper, discontinuous Sturm-Liouville problems, which contain eigenvalue parameters both in the equation and in one of the boundary conditions, are investigated. By using an operatortheoretic interpretation we ...In this paper, discontinuous Sturm-Liouville problems, which contain eigenvalue parameters both in the equation and in one of the boundary conditions, are investigated. By using an operatortheoretic interpretation we extend some classic results for regular Sturm-Liouville problems and obtain asymptotic approximate formulae for eigenvalues and normalized eigenfunctions. We modify some techniques of [Fulton, C. T., Proc. Roy. Soc. Edin. 77 (A), 293-308 (1977)], [Walter, J., Math. Z., 133, 301-312 (1973)] and [Titchmarsh, E. C., Eigenfunctions Expansion Associated with Second Order Differential Equations I, 2nd edn., Oxford Univ. Pres, London, 1962], then by using these techniques we obtain asymptotic formulae for eigenelement norms and normalized eigenfunctions.展开更多
In this paper we prove a new fixed point theorem in cones and then obtain the existence of triple positive solutions for a class of multi-point boundary value problem.
文摘In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered interval, but also point of discontinuity and linear functionals is investigated. So, the problem is not pure boundary-value. The authors single out a class of linear functionals and find simple algebraic conditions on coefficients, which garantee the existence of infinit number eigenvalues. Also the asymptotic formulas for eigenvalues are found.
基金Project supported by the National Natural Science Foundation of China (Nos.10372016 and 10672022)
文摘Weak solution (or generalized solution) for the boundary-value problems of partial differential equations of elasticity of 3D (three-dimensional) quasicrystals is given, in which the matrix expression is used. In terms of Korn inequality and theory of function space, we prove the uniqueness of the weak solution. This gives an extension of existence theorem of solution for classical elasticity to that of quasicrystals, and develops the weak solution theory of elasticity of 2D quasicrystals given by the second author of the paper and his students.
文摘By using the fixed point theorem under the case structure, we study the existence of sign-changing solutions of A class of second-order differential equations three-point boundary-value problems, and a positive solution and a negative solution are obtained respectively, so as to popularize and improve some results that have been known.
文摘Let stand for the polar coordinates in R2, ?be a given constant while satisfies the Laplace equation in the wedge-shaped domain or . Here αj(j = 1,2,...,n + 1) denote certain angles such that αj αj(j = 1,2,...,n + 1). It is known that if r = a satisfies homogeneous boundary conditions on all boundary lines ?in addition to non-homogeneous ones on the circular boundary , then an explicit expression of in terms of eigen-functions can be found through the classical method of separation of variables. But when the boundary?condition given on the circular boundary r = a is homogeneous, it is not possible to define a discrete set of eigen-functions. In this paper one shows that if the homogeneous condition in question is of the Dirichlet (or Neumann) type, then the logarithmic sine transform (or logarithmic cosine transform) defined by (or ) may be effective in solving the problem. The inverses of these transformations are expressed through the same kernels on or . Some properties of these transforms are also given in four theorems. An illustrative example, connected with the heat transfer in a two-part wedge domain, shows their effectiveness in getting exact solution. In the example in question the lateral boundaries are assumed to be non-conducting, which are expressed through Neumann type boundary conditions. The application of the method gives also the necessary condition for the solvability of the problem (the already known existence condition!). This kind of problems arise in various domain of applications such as electrostatics, magneto-statics, hydrostatics, heat transfer, mass transfer, acoustics, elasticity, etc.
文摘This note is concerned with an iterative method for the solution of singular boundary value problems. It can be considered as a predictor-corrector method. Sufficient conditions for the convergence of the method are introduced. A number of numerical examples are used to study the applicability of the method.
基金partially supported by the NASA Nebraska Space Grant Program and UCRCA at the University of Nebraska at Omaha.
文摘In this paper,we develop and analyze a finite difference method for linear second-order stochastic boundary-value problems(SBVPs)driven by additive white noises.First we regularize the noise by the Wong-Zakai approximation and introduce a sequence of linear second-order SBVPs.We prove that the solution of the SBVP with regularized noise converges to the solution of the original SBVP with convergence order O(h)in the meansquare sense.To obtain a numerical solution,we apply the finite difference method to the stochastic BVP whose noise is piecewise constant approximation of the original noise.The approximate SBVP with regularized noise is shown to have better regularity than the original problem,which facilitates the convergence proof for the proposed scheme.Convergence analysis is presented based on the standard finite difference method for deterministic problems.More specifically,we prove that the finite difference solution converges at O(h)in the mean-square sense,when the second-order accurate three-point formulas to approximate the first and second derivatives are used.Finally,we present several numerical examples to validate the efficiency and accuracy of the proposed scheme.
文摘The purpose of this paper is to extend some fundamental spectral properties of regular Sturm-Liouville problems to special kind discontinuous boundary value problem, which consist of a Sturm-Liouville equation with piecewise continuous potential together with eigenvalue parameter on the boundary and transmission conditions. The authors suggest their own approach for finding asymptotic approximations formulas for eigenvalues and eigenfunctions of such discontinuous problems.
文摘The purpose of this article is to extend some spectral properties of regular Sturm- Liouville problems to the special type discontinuous boundary-value problem, which consists of a Sturm-Liouville equation together with eigenparameter-dependent boundary conditions and two supplementary transmission conditions. We construct the resolvent operator and Green's function and prove theorems about expansions in terms of eigenfunctions in modified Hilbert space L2[a, b].
基金Project supported by the National Natural Science Foundation of China(No.10672194)the China-Russia Cooperative Project(the National Natural Science Foundation of China and the Russian Foundation for Basic Research)(No.10811120012)
文摘This paper presents a precise method for solving singularly perturbed boundary-value problems with the boundary layer at one end. The method divides the interval evenly and gives a set of algebraic equations in a matrix form by the precise integration relationship of each segment. Substituting the boundary conditions into the algebraic equations, the coefficient matrix can be transformed to the block tridiagonal matrix. Considering the nature of the problem, an efficient reduction method is given for solving singular perturbation problems. Since the precise integration relationship introduces no discrete error in the discrete process, the present method has high precision. Numerical examples show the validity of the present method.
文摘The paper is concerned with strongly nonlinear singularly perturbed bound- ary value problems in one dimension.The problems are solved numerically by finite- difference schemes on special meshes which are dense in the boundary layers.The Bakhvalov mesh and a special piecewise equidistant mesh are analyzed.For the central scheme,error estimates are derived in a discrete L^1 norm.They are of second order and decrease together with the perturbation parameterε.The fourth-order Numerov scheme and the Shishkin mesh are also tested numerically.Numerical results showε-uniform pointwise convergence on the Bakhvalov and Shishkin meshes.
基金This research was supported by the NASA Nebraska Space Grant(Federal Grant/Award Number 80NSSC20M0112).
文摘This paper is concerned with convergence and superconvergence properties of the local discontinuous Galerkin(LDG)method for two-dimensional semilinear second-order elliptic problems of the form−Δu=f(x,y,u)on Cartesian grids.By introducing special GaussRadau projections and using duality arguments,we obtain,under some suitable choice of numerical fuxes,the optimal convergence order in L2-norm of O(h^(p+1))for the LDG solution and its gradient,when tensor product polynomials of degree at most p and grid size h are used.Moreover,we prove that the LDG solutions are superconvergent with an order p+2 toward particular Gauss-Radau projections of the exact solutions.Finally,we show that the error between the gradient of the LDG solution and the gradient of a special Gauss-Radau projection of the exact solution achieves(p+1)-th order superconvergence.Some numerical experiments are performed to illustrate the theoretical results.
基金National Natural Science Foundation of China (10477001, 60673056)
文摘The fabrication of high-precision panels for the compact antenna test range (CATR) with a sandwich construction of two aluminum skin-plates and one aluminum middle plate,which are bonded to two aluminum honeycomb core-layers poses a lot of tricky problems. Of them,the force analysis of individual skin-layers and the springback calculation of sandwich are of utmost importance. Under reasonable assumptions,by using Fourier expansion of stress function and power series expansion of deflection function,two boun...
基金Project supported by the National Natural Science Foundation of China
文摘The nonlocal theory which confiders interatomic long-range interaction in materials is one of the generalized continuum theories which involve the microstructure characteristic of material media. The basic equations of linear, homogeneous, isotropic, nonlocal elastic solids
文摘In this paper, we study some singular singularly-perturbed boundary-value problem Pε consisting of the differential equations and the boundary conditions where t ∈ [0, 1], 0 <ε ≤ ε0. U, V, H1 and H2 are scalar functions and infinitely differentiable with respect to their variables respectively.Our approach is somewhat similar to those of Chang [2], Shi [6] and Smith [7]. Our main result (Theorem 4) is new and extends the result, in the scalar case, of Shi [6], who dealt with the problem (1) with V(t, x, ε2y, ε) in place of V(t, x, εy, ε). An application of our result is given at the end.
基金supported by the National Natural Science Foundation of China(Grant 11321202)the Specialized Research Fund for the Doctoral Program of Higher Education(Grant 20130101110120)
文摘Significant progress has been made in mixed boundary-value problems associated with three-dimensional(3D) crack and contact analyses of advanced materials featuring more complexities compared to the conventional isotropic elastic materials.These include material anisotropy and multifield coupling,two typical characteristics of most current multifunctional materials.In this paper we try to present a state-of-the-art description of 3D exact/analytical solutions derived for crack and contact problems of elastic solids with both transverse isotropy and multifield coupling in the latest decade by the potential theory method in the spirit of V.I.Fabrikant.whose ingenious breakthrough brings new vigor and vitality to the old research subject of classical potential theory.We are particularly interested in crack and contact problems with certain nonlinear features.Emphasis is also placed on the coupling between the temperature field(or the like) and other physical fields(e.g.,elastic,electric,and magnetic fields).We further highlight the practical significance of 3D contact solutions,in particular in applications related to modern scanning probe microscopes.
文摘The displacements of the plate are assumed appropriately to derive the solutions of the 3-D Navier equations. And the conditions on the plate's surface are investigated. In the examples, the boundary-value problems of the plate are solved by applying the Navier-equation's solutions and their closed-form solutions are obtained. The results formulated in the present paper satisfy exactly the governing equations and can reflect precisely the boundary effects of complicated distributions on the edge of plates.
基金Supported by the National Natural Science Foundations of China under Grant No 50476083.
文摘We present a theoretical analysis for fully developed convective beat transfer in a circular tube for power law fluids by assuming that the thermal diffusivity is a function of temperature gradient. The analytical eolution is obtained and the heat transfer behaviour is investigated under a constant heat flux boundary condition. It is shown that the Nusselt number strongly depends on the value of power law index n. The Nusselt number sharply decreases in the range of 0 〈 n 〈 0.1. However, for n 〉 0.5, the Nusselt number decreases monotonically with the increasing n, and for n 〉 20, the values of Nusselt number approach a constant.
文摘In this paper, a method to construct an analytic-numerical solution for homogeneous parabolic coupled systems with homogeneous boundary conditions of the type ut = Auxx, A1u(o,t) + B1ux(o,t) = 0, A2u(1,t) + B2ux(1,t) = 0, ot>0, u (x,0) = f(x), where A is a positive stable matrix and A1, B1, B1, B2,? ?are arbitrary matrices for which the block matrix is non-singular, is proposed.
文摘In this paper, discontinuous Sturm-Liouville problems, which contain eigenvalue parameters both in the equation and in one of the boundary conditions, are investigated. By using an operatortheoretic interpretation we extend some classic results for regular Sturm-Liouville problems and obtain asymptotic approximate formulae for eigenvalues and normalized eigenfunctions. We modify some techniques of [Fulton, C. T., Proc. Roy. Soc. Edin. 77 (A), 293-308 (1977)], [Walter, J., Math. Z., 133, 301-312 (1973)] and [Titchmarsh, E. C., Eigenfunctions Expansion Associated with Second Order Differential Equations I, 2nd edn., Oxford Univ. Pres, London, 1962], then by using these techniques we obtain asymptotic formulae for eigenelement norms and normalized eigenfunctions.
基金The project is supported by National Natural Science Foundation of China(10371006)
文摘In this paper we prove a new fixed point theorem in cones and then obtain the existence of triple positive solutions for a class of multi-point boundary value problem.