期刊文献+
共找到2,437篇文章
< 1 2 122 >
每页显示 20 50 100
Discovery and Significance of the Triassic–Late Paleozoic Double-layered Basement in the Songliao Basin:Based on the Complete Coring Data from ICDP Borehole SK2
1
作者 YANG Zhuolong WANG Pujun +2 位作者 GAO Youfeng GAO Chuancheng TANG Xin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第S01期75-76,共2页
The Songliao Basin(SLB)covers an area of approximately 260,000 km2in northeastern Asia and preserves a continuous and complete Cretaceous terrestrial record(Wang et al.,2021).The region is the most important petrolife... The Songliao Basin(SLB)covers an area of approximately 260,000 km2in northeastern Asia and preserves a continuous and complete Cretaceous terrestrial record(Wang et al.,2021).The region is the most important petroliferous sedimentary basin in China because of its continual annual oil and gas equivalent production of tens of millions of tons(ca.220–440 million barrels per year)since 1959.The SLB was previously thought to have developed on Hercynian basement and accumulated continuous sedimentary deposits during the Late Jurassic and Cretaceous(Wan et al.,2013;Wang et al.,2016). 展开更多
关键词 double-layered basement ICDP Triassic and paleozoic Songliao Basin
下载PDF
Age and geochemical evolution of granite magmatism in Olkhon region from Caledonian syncollisional ore-free granite to the rare metal granite and pegmatite of Middle Paleozoic intraplate setting
2
作者 Viktor Antipin Valentina Makrygina +1 位作者 Larisa Kushch Nataliya Sheptyakova 《China Geology》 CAS CSCD 2024年第1期63-79,共17页
The detailed description of two granite complexes in the Olkhon subterrane is given.The Early Paleozoic Sharanur complex was formed by granitization of gneisses of the Olkhon series.It includes migmatites,granite-gnei... The detailed description of two granite complexes in the Olkhon subterrane is given.The Early Paleozoic Sharanur complex was formed by granitization of gneisses of the Olkhon series.It includes migmatites,granite-gneisses,granites and pegmatites of normal alkalinity;they belong to the type of syncollisional granites.The Middle Paleozoic Aya granite complex includes mother Aya massif of amazonite-bearing granites and several types of rare-metal pegmatites.They have elevated alkalinity,low of Ba,Sr,and high LILE and HFSE elements contents.The Aya pegmatites lie in northwest cracks of stretching and associated with the rise of the territory under the influence of the North Asian plume.These cracks and pegmatites mark the beginning of a new intraplate geodynamic setting.Two geochemical types are distinguished among the pegmatites of this complex.These are amazonite pegmatites of Li-F type with Ta mineralization and complex type pegmatite with Be-Rb-Nb-Ta and Li-F mineralization(the Ilixin vein).The Tashkiney pegmatite vein is similar to Ilixin,but lies in the gneisses of the Olkhon series.It shows high concentrations of Be,Nb,Ta,as well as W,Sn,but lacks Li and F,due to a greater depth and higher temperature of the melt crystallization of this pegmatite. 展开更多
关键词 PEGMATITE Geochemistry Submantle plume MAGMATISM Caledonian collision Middle paleozoic intraplate setting Be-Rb-Nb-Ta-Li-F mineralization Olkhon region Russia
下载PDF
Upper Paleozoic total petroleum system and geological model of natural gas enrichment in Ordos Basin, NW China 被引量:3
3
作者 JIANG Fujie JIA Chengzao +8 位作者 PANG Xiongqi JIANG Lin ZHANG Chunlin MA Xingzhi QI Zhenguo CHEN Junqing PANG Hong HU Tao CHEN Dongxia 《Petroleum Exploration and Development》 SCIE 2023年第2期281-292,共12页
Based on the analysis of Upper Paleozoic source rocks, source-reservoir-caprock assemblage, and gas accumulation characteristics in the Ordos Basin, the gas accumulation geological model of total petroleum system is d... Based on the analysis of Upper Paleozoic source rocks, source-reservoir-caprock assemblage, and gas accumulation characteristics in the Ordos Basin, the gas accumulation geological model of total petroleum system is determined. Then, taking the Carboniferous Benxi Formation and the Permian Taiyuan Formation and Shanxi Formation as examples, the main controlling factors of gas accumulation and enrichment are discussed, and the gas enrichment models of total petroleum system are established. The results show that the source rocks, faults and tight reservoirs and their mutual coupling relations control the distribution and enrichment of gas. Specifically, the distribution and hydrocarbon generation capacity of source rocks control the enrichment degree and distribution range of retained shale gas and tight gas in the source. The coupling between the hydrocarbon generation capacity of source rocks and the physical properties of tight reservoirs controls the distribution and sweet spot development of near-source tight gas in the basin center. The far-source tight gas in the basin margin is mainly controlled by the distribution of faults, and the distribution of inner-source, near-source and far-source gas is adjusted and reformed by faults. Generally, the Upper Paleozoic gas in the Ordos Basin is recognized in four enrichment models: inner-source coalbed gas and shale gas, inner-source tight sandstone gas, near-source tight gas, and far-source fault-transported gas. In the Ordos Basin, inner-source tight gas and near-source tight gas are the current focuses of exploration, and inner-source coalbed gas and shale gas and far-source gas will be important potential targets in the future. 展开更多
关键词 Upper paleozoic tight gas total petroleum system gas accumulation characteristics gas enrichment model Or-dos Basin
下载PDF
Paleozoic Tectonic Switch in the North Qinling Orogenic Belt:Constraints from the Paleozoic Granites from the Northern Qinling Migmatite Terrane 被引量:1
4
作者 QIN Jiangfeng LAI Shaocong LONG Xiaoping 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第3期695-706,共12页
The variations in source rocks and melting conditions of granites can provide essential clues for the crustal magmatic response in orogenic process.Based on geochronology,whole-rock and mineral chemistry,this paper re... The variations in source rocks and melting conditions of granites can provide essential clues for the crustal magmatic response in orogenic process.Based on geochronology,whole-rock and mineral chemistry,this paper reveals two different granites in the Northern Qinling migmatite complex,which reveal obvious differences in source region and melting condition.The older granodiorite(402±0.8 Ma)displays typical Na-rich adakite affinity,i.e.,high Na_(2)O/K_(2)O(2.04 to 2.64)and Sr/Y(96 to 117)ratios,they have relative evolved isotopic compositions(ε_(Nd)(t)=-0.52 to-0.04;zirconε_(Hf)(t)=-0.06 to+7.78).The younger leucogranite(371±2 Ma)displays higher SiO_(2)(72.32 to 73.45 wt%),lower(TFeO+MgO+CaO+TiO_(2))contents(<2 wt%)and depleted Sr-Nd-Hf isotopic compositions(i.e.,ε_(Nd)(t)=+2.6 to+3.0;zirconε_(Hf)(t)=+5.94 to+14.12),as well as high 10000×Ga/Al and TFe O/Mg O ratios,indicating that they represent highly fractionated I-type granites that derived from melting of juvenile crust.The variations in source rocks and melting condition of the two granites indicating a tectonic switch from compression to extension in 400 to 370 Ma,this switch is later than that in the eastern section of the North Qinling,indicating a scissor collision process between the South Qinling and North China Craton(NCC)in Devonian era. 展开更多
关键词 QINLING ZIRCON paleozoic
下载PDF
Geochemical characteristics of temperature and pressure of Paleozoic reservoir fluid inclusions in Xuanjing region, Lower Yangtze area
5
作者 DONG Min LIANG Minliang +3 位作者 DONG Hui FENG Xingqiang ZHANG Linyan WANG Zongxiu 《Global Geology》 2023年第4期222-236,共15页
In order to understand the geochemical characteristics of Paleozoic reservoir fluids in Xuanjing region,Lower Yangtze area,drilling core samples from Y and D wells were tested and analyzed to study the fluid inclusion... In order to understand the geochemical characteristics of Paleozoic reservoir fluids in Xuanjing region,Lower Yangtze area,drilling core samples from Y and D wells were tested and analyzed to study the fluid inclusion types and composition.Pressure correction was undertaken to determine the temperature and pressure environment for inclusion formation,and the influence of fluid characteristics of the Upper Permian and Lower Triassic reservoirs on the preservation of shale gas was investigated.According to petrograph-ic observations,fluid inclusions are mainly brine and bitumen inclusions.Bitumen inclusions are mainly distributed in holes and fractures,and with smaller individuals.No visible fluorescence was observed,and the vitrinite reflectance is 3.39%–3.92%.This indicates that there had been oil and gas accumulation in the early stage of diagenesis in the study area,but due to the influence of magmatic hydrothermal solution,oil and gas underwent thermal metamorphism in the early stage,making liquid petroleum into solid bitumen.At present,oil and gas in the reservoir were largely formed in the late stage.During the continuous process in which shale was buried,light oil and gas were generated.Light oil and gas underwent magmatic and tectonic hydrothermal processes in some areas,resulting in high-temperature metamorphic cracking that formed dry gas.Moreover,nitrogen inclusions are found in fluid inclusions,forming metamorphic fluids caused by mag-matic hydrothermal activities.The study shows that Paleozoic reservoirs in Xuanjing area are characterized by self-generation and self-storage.Furthermore,the mechanism of shale gas accumulation is not only related to the buried hydrocarbon generation process of shale itself,but is also related to later magmatic activity and tectonic hydrothermal transformation.Therefore,preservation conditions are generally key factors of shale gas accumulation in this area. 展开更多
关键词 fluid inclusions geochemical characteristics paleozoic Xuanjing area
下载PDF
Determination of the early Paleozoic accretionary complex in Southwestern Yunnan, China: Implications for the tectonic evolution of the Proto-Tethys Ocean
6
作者 Guo-chuan Yan Bao-di Wang +2 位作者 Han Liu Juan He Zhi-min Peng 《China Geology》 CAS CSCD 2023年第2期322-337,I0016-I0041,共42页
Accretionary complex study provides important knowledge on the subduction and the geodynamic processes of the oceanic plate,which represents the ancient ocean basin extinction location.Nevertheless,there exist many di... Accretionary complex study provides important knowledge on the subduction and the geodynamic processes of the oceanic plate,which represents the ancient ocean basin extinction location.Nevertheless,there exist many disputes on the age,material source,and tectonic attribute of the Lancang Group,located in Southwest Yunnan,China.In this paper,the LA-ICP-MS detrital zircon U‒Pb chronology of nine metamorphic rocks in the Lancang Group was carried out.The U‒Pb ages of the three detrital zircons mainly range from 590-550 Ma,980-910 Ma,and 1150-1490 Ma,with the youngest detrital zircons having a peak age of about 560 Ma.The U‒Pb ages of the six detrital zircons mainly range from 440-460 Ma and 980-910 Ma,and the youngest detrital zircon has a peak age of about 445 Ma.In the Lancang Group,metamorphic acidic volcanic rocks,basic volcanic rocks,intermediate-acid intrusive rocks,and high-pressure metamorphic rocks are exposed in the form of tectonic lens in schist,rendering typical melange structural characteristics of“block+matrix”.Considering regional deformation and chronology,material composition characteristics,and the previous data,this study thinks the Lancang Group may be an early Paleozoic tectonic accretionary complex formed by the eastward subduction of the Changning-Menglian Proto-Tethys Ocean,which provides an important constraint for the Tethys evolution. 展开更多
关键词 Early paleozoic Accretionary complex Langcang Group Block+matrix Proto-Tethys Ocean Geological survey engineering Eastern margin of Qinghai-Tibet Plateau
下载PDF
Identification and evaluation of fault-fracture reservoirs in buried hills of the Lower Paleozoic, Chengdao area, China
7
作者 Zhiwei Wang Kai Zhang +1 位作者 Yuhan Cheng Qunhu Wu 《Energy Geoscience》 2023年第3期193-202,共10页
The Bohai Bay Basin is a Meso-Cenozoic rifted basin where the Paleozoic buried hills with great hydrocarbon potentials are well developed. The reservoir space types are complex and diverse due to tectonic activities, ... The Bohai Bay Basin is a Meso-Cenozoic rifted basin where the Paleozoic buried hills with great hydrocarbon potentials are well developed. The reservoir space types are complex and diverse due to tectonic activities, making fracture distribution highly heterogeneous. Reservoir identification and mapping is challenging due to their large burial depth and poor resolution of seismic data. An integration of well-logging, seismic data interpretation and core observation is applied to identify three structural unit types in the study area, that is, fault breccia zone, fault cataclastic zone, and fault massive rock zone. A comprehensive well-logging identification template and a comprehensive discriminant function M for the reservoir are established based on the well-logging response characteristics. A M value greater than 0.12 indicates a fault breccia zone, that between 0.04 and 0.12 marks a fault cataclastic zone, and that in the range from 0.02 to 0.04 represents a fault massive rock zone. A seismic prediction method with multi-parameter fusion is proposed in the study. The large-scale fractures are mapped by coherence-clutter parameters, while small fractures are predicted via waveform indication inversion. The spatial distribution of “fault-fracture reservoirs” is precisely mapped by frequency fusion technology. It is found that the fault breccia zones usually occur close to the fault planes, while the fault cataclastic zones are slightly away from the fault planes. The hydrocarbon abundance of the breccia zones is greater than that of the fault cataclastic and fault massive rock zones. 展开更多
关键词 Buried hill Fault-facture Ieservoir Reservoir logging identication Reservoir sei smnic mapping Lower paleozoic Chengdao area
下载PDF
Paleozoic Accretion-Collision Events and Kinematics of Ductile Deformation in the Eastern Part of the Southern-Central Tianshan Belt, China 被引量:37
8
作者 舒良树 J.Charvet +1 位作者 卢华复 S.C.LAURENT 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2002年第3期308-323,共16页
The Tianshan range could have been built by both late Early Paleozoicaccretion and Late Paleozoic collision events. The late Early Paleozoic Aqqikkudug-Weiya suture ismarked by Ordovician ophiolitic melange and a Silu... The Tianshan range could have been built by both late Early Paleozoicaccretion and Late Paleozoic collision events. The late Early Paleozoic Aqqikkudug-Weiya suture ismarked by Ordovician ophiolitic melange and a Silurian flysch sequence, high-pressure metamorphicrelics, and mylonitized rocks. The Central Tianshan belt could principally be an Ordovician volcanicarc; whereas the South Tianshan belt, a back-arc basin. Macro- and microstructures, along withunconformities, provide some kinematic and chronological constraints on 2-phase ductile deformation.The earlier ductile deformation occurring at ca. 400 Ma was marked by north-verging ductileshearing, yielding granulite-bearing ophiolitic melange blocks and garnet-pyroxene-facies ductiledeformation, and the later deformation, a dextral strike-slip tectonic process, occurred during theLate Carboniferous-Early Permian. Early Carboniferous molasses were deposited unconformably onpre-Carboniferous metamorphic and ductilely sheared rocks, implying the end of the early orogeny.The large-scale ductile strike-slip along the Aqqikkudug-Weiya zone was possibly caused by thesecond tectonic event, the Hercynian collision between the northern Tarim block and the southernSiberian block. Late Paleozoic granitic magmatism and superimposed structures overprinted this EarlyPaleozoic deformation belt. Results of geometric and kinematic studies suggest that the primaryframework of the Southern-Central Tianshan belt, at least the eastern part of the Tianshan belt, wasbuilt by these two phases of accretion events. 展开更多
关键词 KINEMATICS ductile deformation collision-accretion paleozoic Southern-Central Tianshan belt
下载PDF
Chinese Continental Blocks in Global Paleocontinental Reconstruction during Paleozoic and Mesozoic 被引量:17
9
作者 WAN Tianfeng ZHU Hong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2011年第3期581-597,共17页
The Cambrian to Cretaceous paleomagnetic data from Chinese continental and adjacent blocks were collected using principles to obtain reliable and high-precision paleomagnetic data and to pay attention to the similarit... The Cambrian to Cretaceous paleomagnetic data from Chinese continental and adjacent blocks were collected using principles to obtain reliable and high-precision paleomagnetic data and to pay attention to the similarity of paleobiogeography and the coordination of tectonic evolution.The Chinese continental blocks were laid up on the reconstruction of proposed global paleocontinents with almost the same scale.Thus,it can be clearly recognized that the global continents,including Chinese continental blocks,range along latitudes on the southern side of the equator during the Early Paleozoic. In the Paleozoic,Chinese continental blocks were still located among the Laurentia,Siberia and Gondwana plates,following the fast moving of the Siberia Plate northwards,the amalgamation in a north-south direction at the western parts of the Laurentia and Gondwana plates,and the Iapetus and Rheic Oceans were subducted,eventually to form a uniform Pangea in the Late Paleozoic.The Australian and Indian plates of Eastern Gondwana moved and dispersed gradually southwards, continued to extend the Paleo-Tethys Ocean.The Chinese continental and adjacent blocks were still located in the Paleo-Tethys Ocean,preserved the status of dispersion,gradually moving northwards, showing characteristics of ranging along a north-south orientation until the Permian.In addition,a series of local collisions happened during the Triassic,and consequently most of the Chinese continental blocks were amalgamated into the Pangea,except for the Gangdise and Himalayan blocks. There was a counter-clockwise rotation of the Eastern Asian continent in the Jurassic and northwards migration of the Chinese continent in varying degrees during the Cretaceous,but the Himalayan and Indian plates did not collide into the Chinese continent during this period. 展开更多
关键词 PALEOMAGNETISM paleogeographic reconstruction paleozoic MESOZOIC China
下载PDF
Main controlling factors and enrichment area evaluation of shale gas of the Lower Paleozoic marine strata in south China 被引量:32
10
作者 Xian-Ming Xiao Qiang Wei +5 位作者 Hai-Feng Gai Teng-Fei Li Mao-Lin Wang Lei Pan Ji Chen Hui Tian 《Petroleum Science》 SCIE CAS CSCD 2015年第4期573-586,共14页
The Lower Paleozoic shale in south China has a very high maturity and experienced strong tectonic defor- mation. This character is quite different from the North America shale and has inhibited the shale gas evaluatio... The Lower Paleozoic shale in south China has a very high maturity and experienced strong tectonic defor- mation. This character is quite different from the North America shale and has inhibited the shale gas evaluation and exploration in this area. The present paper reports a com- prehensive investigation of maturity, reservoir properties, fluid pressure, gas content, preservation conditions, and other relevant aspects of the Lower Paleozoic shale from the Sichuan Basin and its surrounding areas. It is found that within the main maturity range (2.5 % 〈 EqRo 〈 3.5 %) of the shale, its porosity develops well, having a positive cor- relation with the TOC content, and its gas content is con- trolled mainly by the preservation conditions related to the tectonic deformation, but shale with a super high maturity (EqRo 〉 3.5 %) is considered a high risk for shale gas exploration. Taking the southern area of the Sichuan Basin and the southeastern area of Chongqing as examples of uplifted/folded and faulted/folded areas, respectively, geo- logical models of shale gas content and loss were proposed. For the uplifted/folded area with a simple tectonic defor- mation, the shale system (with a depth 〉 2000 m) has lar- gely retained overpressure during uplifting without a great loss of gas, and an industrial shale gas potential is generally possible. However, for the faulted/folded area with a strong tectonic deformation, the sealing condition of the shale system was usually destroyed to a certain degree with a great loss of free gas, which decreased the pressure coefficient and resulted in a low production capacity. It is predicted that the deeply buried shale (〉3000 m) has a greater gas potential and will become the focus for further exploration and development in most of the south China region (outside the Sichuan Basin). 展开更多
关键词 Lower paleozoic shale gas MATURITY Maincontrolling factors Tectonic deformation
下载PDF
Characteristics and accumulation mechanism of tight sandstone gas reservoirs in the Upper Paleozoic, northern Ordos Basin, China 被引量:18
11
作者 Liu Guangdi Sun Mingliang +2 位作者 Zhao Zhongying Wang Xiaobo Wu Shenghe 《Petroleum Science》 SCIE CAS CSCD 2013年第4期442-449,共8页
The Ordos Basin is a significant petroliferous basin in the central part of China.The Carboniferous and Permian deposits of transitional and continental facies are the main gas-bearing layers in the north part of the ... The Ordos Basin is a significant petroliferous basin in the central part of China.The Carboniferous and Permian deposits of transitional and continental facies are the main gas-bearing layers in the north part of the basin.The Carboniferous and Permian natural gas reservoirs in the northern Ordos Basin are mainly tight sandstone reservoirs with low porosity and low permeability,developing lots of "sweet spots" with comparatively high porosity and permeability.The tight sandstones in the study area are gas-bearing,and the sweet spots are rich in gas.Sweet spots and tight sandstones are connected rather than being separated by an interface seal.Sweet spot sand bodies are vertically and horizontally overlapped,forming a large gas reservoir group.In fact,a reservoir formed by a single sweet spot sand body is an open gas accumulation.In the gentle dipping geological setting and with the source rocks directly beneath the tight reservoirs over a large area,the balance between gas charging into tight reservoirs from source rocks and gas loss from tight reservoirs through caprock is the key of gas accumulation in tight sandstones.Both the non-Darcy flow charging driven by source-reservoir excess pressure difference and the diffusion flow charging driven by source-reservoir gas concentration difference play an important role in gas accumulation.The results of mathematical modeling indicate that the gas accumulation cannot be formed by just one of the above mechanisms.The diffusion of gas from source rocks to reservoirs is a significant mechanism of tight sandstone gas accumulation. 展开更多
关键词 Tight sandstone gas accumulation gas diffusion Upper paleozoic Ordos Basin
下载PDF
Tectonic Constraints on the Transformation of Paleozoic Framework of Uplift and Depression in the Ordos Area 被引量:10
12
作者 WANG Qingfei DENG Jun +4 位作者 HUANG Dinghua YANG Liqiang GAO Bangfei XU Hao JIANG Shaoqing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2006年第6期944-953,共10页
During the Paleozoic, the Ordos area in the western North China Plate was located at the intersecting position of microplates and controlled by their interaction. The structural framework in the Ordos area, which unde... During the Paleozoic, the Ordos area in the western North China Plate was located at the intersecting position of microplates and controlled by their interaction. The structural framework in the Ordos area, which underwent transformations in the Ordovician, the Carboniferous and the Permian respectively, was dominated by the alternation of uplift and depression. The transformations of structural framework are utilized as the clues to investigate the microplates' interacting type and its response in the Ordos area. According to the regional structural evolution, the Ordos area is simplified into an isopachous, isotropic and elastic shell model, and under proposed various boundary conditions, three series of numerical simulations corresponding to the three structural transformations are carried out to determine the detailed tectonic constraints. Numerical simulations reveal that the structure of the uplift and depression, which is similar to the actual pattern, develops only under one special boundary condition in each of the three series, indicating that the structural framework responds to the unique tectonic background. The simulation results show that in the Early Paleozoic, the L-shaped paleouplift formed nearby the southwestern corner of the Ordos area because the intensity of the compressions in the southern and western boundaries resulting from the ocean-continent collisions was similar. In the Late Paleozoic, it evolved into continent-continent (or arc-continent) interaction in the southern and northern boundaries; in the preliminary stage of the interaction, since the interface between the North China Plate and the plates on the south and north was narrow, the relative acting force was little and the regional western boundary immobile, and the structural framework in the basin was characterized by the N-S trending slender-waist-shaped uplift; as the interface between the plates expanded gradually, the extrusive force in the southern and northern boundaries of the North China Plate increased, resulting in the paleogeographic divisions showing E-W trending, and, the western boundary of the basin was extruded westward due to the intense compression inducing the local NE trending of paleogeographic division in the central area. The simulation results further reflect that the symmetry of the uplift-depression pattern is restricted by that of the boundary conditions, suggesting that the Paleozoic structural transformations of the Ordos area under boundary constraints accord with the universal physical symmetrical principle. 展开更多
关键词 Ordos Basin paleozoic MICROPLATE strain numerical simulation
下载PDF
Petrogenesis and tectonic implications of early Paleozoic granitoids in East Kunlun belt: Evidences from geochronology, geochemistry and isotopes 被引量:12
13
作者 Guochen Dong Mingfei Luo +7 位作者 Xuanxue Mo Zhidan Zhao Liangqiong Dong Xuehui Yu Xin Wang Xiaowei Li Xiongfei Huang Yanbin Liu 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第5期1383-1397,共15页
The East Kunlun Orogenic Belt(EKOB) provides an important link to reconstruct the evolution of the Proto-Tethys and Paleo-Tethys realm. The EKOB is marked by widespread Early Paleozoic magmatism.Here we report the pet... The East Kunlun Orogenic Belt(EKOB) provides an important link to reconstruct the evolution of the Proto-Tethys and Paleo-Tethys realm. The EKOB is marked by widespread Early Paleozoic magmatism.Here we report the petrology, bulk geochemistry, zircon Ue Pb dating and, Lue Hf and SreN d isotopic data of the Early Paleozoic granitic rocks in Zhiyu area of the southern EKOB. Based on the zircon U-Pb dating, these granitoids, consisting of diorite, granodiorite and monzogranite, were formed during 450 -430 Ma the Late Ordovician to Middle Silurian. The diorite and granodiorite are high Sr/Y ratio as adakitic affinities, and the monzogranite belongs to highly fractionated I-type. Their(^(87)Sr/^(86)Sr)ivalues range from 0.7059 to 0.7085, εNd(t) values from -1.6 to -6.0 and the zircon εHf(t) values show large variations from +9.1 to -8.6 with Hf model ages(T_(DM2)) about 848 Ma and 1970 Ma. The large variations of whole-rock Nd and zircon Hf isotopes demonstrate strong isotopic heterogeneity of the source regions which probably resulted from multi-phase underplating of mantle-derived magmas. Geochemical and isotopic studies proved that the diorite and granodiorite had been derived from partial melting of heterogeneous crustal source with variable contributions from ancient continental crust and juvenile components, and the monzogranites were representing fractional crystallization and crustal contamination for arc magma. The Early Paleozoic adakitic rocks and high-K calc-alkaline granitoids in the southern EKOB were likely emplaced in a continental marginal arc setting possibly linked to the southwards subduction of the Paleo Kunlun Ocean and the magma generation is linked to partial melting of thickened continental crust induced by underplating of mantle-derived magmas. 展开更多
关键词 GEOCHEMISTRY Zircon GEOCHRONOLOGY and LU-HF isotopes Early paleozoic magmatism Tectonics East KUNLUN OROGENIC BELT
下载PDF
Global kinematics of tectonic plates and subduction zones since the late Paleozoic Era 被引量:10
14
作者 Alexander Young Nicolas Flament +4 位作者 Kayla Maloney Simon Williams Kara Matthews Sabin Zahirovic R.Dietmar Müller 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第3期989-1013,共25页
Detailed global plate motion models that provide a continuous description of plate boundaries through time are an effective tool for exploring processes both at and below the Earth's surface. A new generation of n... Detailed global plate motion models that provide a continuous description of plate boundaries through time are an effective tool for exploring processes both at and below the Earth's surface. A new generation of numerical models of mantle dynamics pre-and post-Pangea timeframes requires global kinematic descriptions with full plate reconstructions extending into the Paleozoic(410 Ma). Current plate models that cover Paleozoic times are characterised by large plate speeds and trench migration rates because they assume that lowermost mantle structures are rigid and fixed through time. When used as a surface boundary constraint in geodynamic models, these plate reconstructions do not accurately reproduce the present-day structure of the lowermost mantle. Building upon previous work, we present a global plate motion model with continuously closing plate boundaries ranging from the early Devonian at 410 Ma to present day.We analyse the model in terms of surface kinematics and predicted lower mantle structure. The magnitude of global plate speeds has been greatly reduced in our reconstruction by modifying the evolution of the synthetic Panthalassa oceanic plates, implementing a Paleozoic reference frame independent of any geodynamic assumptions, and implementing revised models for the Paleozoic evolution of North and South China and the closure of the Rheic Ocean. Paleozoic(410-250 Ma) RMS plate speeds are on average ~8 cm/yr, which is comparable to Mesozoic-Cenozoic rates of ~6 cm/yr on average.Paleozoic global median values of trench migration trend from higher speeds(~2.5 cm/yr) in the late Devonian to rates closer to 0 cm/yr at the end of the Permian(~250 Ma), and during the Mesozoic-Cenozoic(250-0 Ma) generally cluster tightly around ~1.1 cm/yr. Plate motions are best constrained over the past 130 Myr and calculations of global trench convergence rates over this period indicate median rates range between 3.2 cm/yr and 12.4 cm/yr with a present day median rate estimated at~5 cm/yr. For Paleozoic times(410-251 Ma) our model results in median convergence rates largely~5 cm/yr. Globally,~90% of subduction zones modelled in our reconstruction are determined to be in a convergent regime for the period of 120-0 Ma. Over the full span of the model, from 410 Ma to 0 Ma,~93% of subduction zones are calculated to be convergent, and at least 85% of subduction zones are converging for 97% of modelled times. Our changes improve global plate and trench kinematics since the late Paleozoic and our reconstructions of the lowermost mantle structure challenge the proposed fixity of lower mantle structures, suggesting that the eastern margin of the African LLSVP margin has moved by as much as ~1450 km since late Permian times(260 Ma). The model of the plate-mantle system we present suggests that during the Permian Period, South China was proximal to the eastern margin of the African LLSVP and not the western margin of the Pacific LLSVP as previous thought. 展开更多
关键词 TECTONIC reconstruction paleozoic Plate VELOCITIES SUBDUCTION zone KINEMATICS Lower MANTLE structure South China
下载PDF
Structural Evolution and Hydrocarbon Potential of the Upper Paleozoic Northern Ordos Basin, North China 被引量:8
15
作者 YANG Minghui LI Liang +4 位作者 ZHOU Jin JIA Huichong SUN Xiao GONG Ting DING Chao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第5期1636-1648,共13页
The hydrocarbon potential of the Hangjinqi area in the northern Ordos Basin is not well known, compared to the other areas of the basin, despite its substantial petroleum system.Restoration of a depth-converted seismi... The hydrocarbon potential of the Hangjinqi area in the northern Ordos Basin is not well known, compared to the other areas of the basin, despite its substantial petroleum system.Restoration of a depth-converted seismic profile across the Hangjinqi Fault Zone(HFZ) in the eastern Hangjinqi area shows one compression that created anticlinal structures in the Late Triassic, and two extensions in ~Middle Jurassic and Late Early Cretaceous, which were interrupted by inversions in the Late Jurassic–Early Early Cretaceous and Late Cretaceous, respectively.Hydrocarbon generation at the well locations in the Central Ordos Basin(COB) began in the Late Triassic.Basin modeling of Well Zhao-4 suggests that hydrocarbon generation from the Late Carboniferous–Early Permian coal measures of the northern Shanbei Slope peaked in the Early Cretaceous, predating the inversion in the Late Cretaceous.Most source rocks in the Shanbei Slope passed the main gas-migration phase except for the Hangjinqi area source rocks(Well Jin-48).Hydrocarbons generated from the COB are likely to have migrated northward toward the anticlinal structures and traps along the HFZ because the basin-fill strata are dipping south.Faulting that continued during the extensional phase(Late Early Cretaceous) of the Hangjinqi area probably acted as conduits for the migration of hydrocarbons.Thus, the anticlinal structures and associated traps to the north of the HFZ might have trapped hydrocarbons that were charged from the Late Carboniferous–Early Permian coal measures in the COB since the Middle Jurassic. 展开更多
关键词 structural geology hydrocarbons Upper paleozoic Hangjinqi northern Ordos Basin North China
下载PDF
Late Paleozoic Fluid Systems and Their Ore-forming Effects in the Yuebei Basin,Northern Guangdong,China 被引量:6
16
作者 DENG Jun YANG Liqiang +4 位作者 SUN Zhongshi WANG Jianping WANG Qingfei CHENG Xueming ZHOU Yinghua 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2005年第5期673-687,共15页
Based on detailed and systematic researches of the geology of ore deposits, fluid inclusions and isotope geochemistry etc., and regarding the Late Paleozoic fluid system of the Yuebei Basin as an integrated object in ... Based on detailed and systematic researches of the geology of ore deposits, fluid inclusions and isotope geochemistry etc., and regarding the Late Paleozoic fluid system of the Yuebei Basin as an integrated object in this paper, we have revealed the temporo-spatial evolution law of the basin's fluid system and discussed its ore-forming effects by simulating and analyzing the distribution of ore-forming elements, the fluid thermodynamics and dynamics of evolution processes of this basin. The results show that Late Paleozoic ore-forming fluid systems of the Yuebei Basin include four basic types as follows. (1) The sea floor volcanic-exhalation system developed during the rapid basin slip-extension stage in the Mid-Late Devonian, which affected the Dabaoshan region. It thus formed the Dabaoshan-type Cu-Pb-Zn-Fe sea floor volcanic-exhalation sedimentary deposits. (2) The compaction fluid system developed during the stable spreading and thermal subsidence-compression stage of the basin in the Mid-Late Devonian. The range of its effects extended all over the whole basin. It resulted in filling-metasomatic deposits, such as the Hongyan-type pyrite deposits and pyrite sheet within the Fankou-type Cu-Pb-Zn-S deposits. (3) The hot water circulation system of sea floor developed during the stage of basin uplifting and micro-aulacogen from the late Late Carboniferous to Middle Carboniferous. The range of its effects covered the Fankou region. It thus formed MVT deposits, such as the main orebody of the Fankou-type Pb-Zn-S deposits. (4) The gravity fluid system developed during the stage of fold uplifting and the basin closed from Middle Triassic to Jurassic, forming groundwater hydrothermal deposits, e.g. the veinlet Pb-Zn-calcite orebodies of the Fankou-type Pb-Zn- S deposits. Migration and concentration of the ore-forming fluids were constrained by the state of temporo-spatial distribution of its fluid potential. Growth faults not only converged the fluids and drove them to move upwards, but also the fluids often crossed the faults to the edges of the basin at the bottom of these faults and the lithologic interfaces, and even migrated to the basin's edges from top to bottom along the faults, which may be one of the basic reasons for the stratabound deposits to cluster mainly along the contemporaneous faults on the inner border of the basin. The superposed mineralization resulting from the multi-stage activity of contemporaneous faults and ore-forming fluid systems in the basin may be one of the key factors for forming superlarge ore deposits. 展开更多
关键词 fluid system stratabound deposit Late paleozoic Yuebei Basin GUANGDONG
下载PDF
Early Paleozoic tectonics of Asia:Towards a full-plate model 被引量:4
17
作者 Mathew Domeier 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第3期789-862,共74页
Asia is key to a richer understanding of many important lithospheric processes such as crustal growth,continental evolution and orogenesis. But to properly decipher the secrets Asia holds, a first-order tectonic conte... Asia is key to a richer understanding of many important lithospheric processes such as crustal growth,continental evolution and orogenesis. But to properly decipher the secrets Asia holds, a first-order tectonic context is needed. This presents a challenge, however, because a great variety of alternative and often contradictory tectonic models of Asia have flourished. This plethora of models has in part arisen from efforts to explain limited observations(in space, time or discipline) without regard for the broader assemblage of established constraints. The way forward, then, is to endeavor to construct paleogeographic models that fully incorporate the diverse constraints available, namely from quantitative paleomagnetic data, the plentiful record of geologic and paleobiologic observations, and the principles of plate tectonics. This paper presents a preliminary attempt at such a synthesis concerning the early Paleozoic tectonic history of Asia. A review of salient geologic observations and paleomagnetic data from the various continental blocks and terranes of Asia is followed by the presentation of a new, full-plate tectonic model of the region from middle Cambrian to end-Silurian time(500-420 Ma). Although this work may serve as a reference point, the model itself can only be considred provisional and ideally it will evolve with time. Accordingly, all the model details are released so that they may be used to test and improve the framework as new discoveries unfold. 展开更多
关键词 TECTONICS ASIA EARLY paleozoic PALEOGEOGRAPHY PALEOMAGNETISM
下载PDF
Formation Mechanism of the High-quality Upper Paleozoic Natural Gas Reservoirs in the Ordos Basin 被引量:13
18
作者 ZHAO Wenzhi WANG Zecheng CHEN Menjin ZHENG Hongju 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2005年第6期843-855,共13页
The upper Paleozoic natural gas reservoirs in the Ordos basin are generally characterized by a large gas-bearing area and low reserve abundance. On such a geological background, there still exist gas-enriched zones, w... The upper Paleozoic natural gas reservoirs in the Ordos basin are generally characterized by a large gas-bearing area and low reserve abundance. On such a geological background, there still exist gas-enriched zones, with relatively high outputs, high reserve abundance and stably distributed gas layers. The gas-enriched layers with relatively high permeability (the lower limit permeability is 0.5×10^-3μm^2) are key factors for the enrichment and high output of natural gas. Based on core observation, analytic results of inclusions, and a great deal of drilling data, we proposed the following four mechanisms for the formation of high-quality reservoirs: (1) in the source area the parent rocks are mainly metamorphic rocks and granites, which are favorable to keeping primary porosity; (2) under the condition of low A/S (accommodation/sediment supply) ratios, sandstone complex formed due to multistage fluvial stacking and filling are coarse in grain size with a high degree of sorting, low content of mud and good physical properties; (3) early-stage recharge of hydrocarbons restricted compaction and cementation, and thus are favorable to preservation of primary pores; (4) microfractures caused by the activity of basement faults during the Yanshan Movement stage can not only improve the permeability of tight sandstones, but also afford vertical pathways for hydrocarbon gas migration. 展开更多
关键词 lithology of parent rock A/S ratio recharge of hydrocarbons microfractures multistage fluvial complex upper paleozoic Ordos Basin
下载PDF
Paleozoic and Mesozoic Basement Magmatisms of Eastern Qaidam Basin,Northern Qinghai-Tibet Plateau:LA-ICP-MS Zircon U-Pb Geochronology and its Geological Significance 被引量:32
19
作者 CHEN Xuanhua George GEHRELS +2 位作者 YIN An LI Li JIANG Rongbao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第2期350-369,共20页
The eastern margin of the Qaidam Basin lies in the key tectonic location connecting the Qinling, Qilian and East Kunlun orogens. The paper presents an investigation and analysis of the geologic structures of the area ... The eastern margin of the Qaidam Basin lies in the key tectonic location connecting the Qinling, Qilian and East Kunlun orogens. The paper presents an investigation and analysis of the geologic structures of the area and LA-ICP MS zircon U-Pb dating of Paleozoic and Mesozoic magmatisms of granitoids in the basement of the eastern Qaidam Basin on the basis of 16 granitoid samples collected from the South Qilian Mountains, the Qaidam Basin basement and the East Kunlun Mountains. According to the results in this paper, the basement of the basin, from the northern margin of the Qaidam Basin to the East Kunlun Mountains, has experienced at least three periods of intrusive activities of granitoids since the Early Paleozoic, i.e. the magmatisms occurring in the Late Cambrian (493.1±4.9 Ma), the Silurian (422.9±8.0 Ma-420.4±4.6 Ma) and the Late Permian-Middle Triassic (257.8±4.0 Ma-228.8+1.5 Ma), respectively. Among them, the Late Permian - Middle Triassic granitoids form the main components of the basement of the basin. The statistics of dated zircons in this paper shows the intrusive magmatic activities in the basement of the basin have three peak ages of 244 Ma (main), 418 Ma, and 493 Ma respectively. The dating results reveal that the Early Paleozoic magmatism of granitoids mainly occurred on the northern margin of the Qaidam Basin and the southern margin of the Qilian Mountains, with only weak indications in the East Kunlun Mountains. However, the distribution of Permo-Triassic (P-T) granitoids occupied across the whole basement of the eastern Qaidam Basin from the southern margin of the Qilian Mountains to the East Kunlun Mountains. An integrated analysis of the age distribution of P-T granitoids in the Qaidam Basin and its surrounding mountains shows that the earliest P-T magmatism (293.6-270 Ma) occurred in the northwestern part of the basin and expanded eastwards and southwards, resulting in the P-T intrusive magmatism that ran through the whole basin basement. As the Cenozoic basement thrust system developed in the eastern Qaidam Basin, the nearly N-S-trending shortening and deformation in the basement of the basin tended to intensify from west to east, which went contrary to the distribution trend of N-S-trending shortening and deformation in the Cenozoic cover of the basin, reflecting that there was a transformation of shortening and thickening of Cenozoic crust between the eastern and western parts of the Qaidam Basin, i.e., the crustal shortening of eastern Qaidam was dominated by the basement deformation (triggered at the middle and lower crust), whereas that of western Qaidam was mainly by folding and thrusting of the sedimentary cover (the upper crust). 展开更多
关键词 LA-ICP MS zircon U-Pb dating thrust fault system crust shortening and deformation paleozoic and Mesozoic magmatism Qinling-Qilian-Kunlun joint zone Qaidam Basin
下载PDF
Complex Exploration Techniques for the Low-permeability Lithologic Gas Pool in the Upper Paleozoic of Ordos Basin 被引量:9
20
作者 FuJinhua XiShengli LiuXinshe SunLiuyi 《Petroleum Science》 SCIE CAS CSCD 2004年第2期111-118,共8页
The Ordos basin is a stable craton whose late Paleozoic undergoes two sedimentary stages: from the middle- late Carboniferous offshore plain to the Permian continental river and lake delta. Sandstones in delta plain c... The Ordos basin is a stable craton whose late Paleozoic undergoes two sedimentary stages: from the middle- late Carboniferous offshore plain to the Permian continental river and lake delta. Sandstones in delta plain channels, delta-front river mouth bars and tidal channels are well developed. The sandstones are distributed on or between the genetic source rocks, forming good gas source conditions with widespread subtle lithologic gas pools of low porosity, low permeability, low pressure and low abundance. In recent years, a series of experiments has been done, aimed at overcoming difficulties in the exploration of lithologic gas pools. A set of exploration techniques, focusing on geological appraisal, seismic exploration, accurate logging evaluation and interpretation, well testing fracturing, has been developed to guide the exploration into the upper Paleozoic in the basin, leading to the discoveries of four large gas fields: Sulige, Yulin, Wushenqi and Mizhi. 展开更多
关键词 Ordos Basin upper paleozoic lithologic gas pool seismic exploration accurate logging evaluation exploration techniques
下载PDF
上一页 1 2 122 下一页 到第
使用帮助 返回顶部