In the Mesoproterozoic time, the northern part of the Sino-Korean Plate experienced a period of intensive tectonic extension and breakup. 1. An abundance of sedimentary earthquake records is preserved in the Chuanling...In the Mesoproterozoic time, the northern part of the Sino-Korean Plate experienced a period of intensive tectonic extension and breakup. 1. An abundance of sedimentary earthquake records is preserved in the Chuanlinggou, Tuanshanzi and Gaoyuzhuang formations in the Mesoproterozoic Changcheng System (1800-1400 Ma) and in the Mesoproterozoic Wumishan Formation of the Jixian System (1400-1000 Ma). These earthquake records are characterized by various liquefied sand-veins, carbonate microspar and coarser spar veins, limestone dikes, liquefied breccia and various forms of liquefied contorted bedding. This deformation is always associated with synsedimentary faults and igneous activity. 2. Three liquefaction models for soft carbonate sediments are recognized, including liquefaction in laminated carbonate rocks, liquefaction in thin-bedded carbonates and large-scale liquefaction along huge carbonate dikes. 3. Based on the record of earthquake and volcanic activities, the Sino-Korean Plate experienced at least twice intraplate breakups. One occurred between 1800-1400 Ma, and the other occurred at about 1200 Ma. The last breakup resulted in formation of the Yan-Liao aulacogen, a tectonic zone characterized by deeper material vibrancy, active faults, major igneous activity and frequent earthquakes.展开更多
This paper gives an account of the research that the authors conducted on the cyclic sequences, events and evolutionary history from Proterozoic to Meso-Cenozoic in the Sino-Korean plate based on the principle of the ...This paper gives an account of the research that the authors conducted on the cyclic sequences, events and evolutionary history from Proterozoic to Meso-Cenozoic in the Sino-Korean plate based on the principle of the Cosmos-Earth System. The authors divided this plate into 20 super-cyclic or super-mega-cyclic periods and more than 100 Oort periods. The research focused on important sea flooding events, uplift interruption events, tilting movement events, molar-tooth carbonate events, thermal events, polarity reversal events, karst events, volcanic explosion events and storm events, as well as types of resource areas and paleotectonic evolution. By means of the isochronous theory of the Cosmos-Earth System periodicity and based on long-excentricity and periodicity, the authors elaborately studied the paleogeographic evolution of the aulacogen of the Sino-Korean plate, the oolitic beach platform formation, the development of foreland basin and continental rift valley basin, and reconstructed the evolution展开更多
Recent field studies on Upper Silurian stratigraphy and paleontology in the Inner Mongolia Autonomous Region (for short Inner Mongalia) near Bater Obo (=Bateaobao) resulted in the discovery of a small continental isla...Recent field studies on Upper Silurian stratigraphy and paleontology in the Inner Mongolia Autonomous Region (for short Inner Mongalia) near Bater Obo (=Bateaobao) resulted in the discovery of a small continental island with fossil invertebrates preserved as encrusters (stromatoporoids and corals) attached directly to a rocky shore surface and buried by silty clay mud. The Bater island (named herein) is 610 m ×200 m in size and composed of Ordovician igneous rock (diorite). Limestone strata dating from the Ludlow Epoch (about 420 Ma) surround the island and dip away from the igneous core in a radial pattern. The encrusting fossils occur on the sheltered (south and southeast) side of the island, whereas the north side was exposed to stronger wave activity based on a basal conglomerate unit composed of diorite boulders. This is the first record of an ancient island in China and the first report worldwide of stromatoporoids as members of a rocky-shore community. The island clearly shows distinct windward展开更多
文摘In the Mesoproterozoic time, the northern part of the Sino-Korean Plate experienced a period of intensive tectonic extension and breakup. 1. An abundance of sedimentary earthquake records is preserved in the Chuanlinggou, Tuanshanzi and Gaoyuzhuang formations in the Mesoproterozoic Changcheng System (1800-1400 Ma) and in the Mesoproterozoic Wumishan Formation of the Jixian System (1400-1000 Ma). These earthquake records are characterized by various liquefied sand-veins, carbonate microspar and coarser spar veins, limestone dikes, liquefied breccia and various forms of liquefied contorted bedding. This deformation is always associated with synsedimentary faults and igneous activity. 2. Three liquefaction models for soft carbonate sediments are recognized, including liquefaction in laminated carbonate rocks, liquefaction in thin-bedded carbonates and large-scale liquefaction along huge carbonate dikes. 3. Based on the record of earthquake and volcanic activities, the Sino-Korean Plate experienced at least twice intraplate breakups. One occurred between 1800-1400 Ma, and the other occurred at about 1200 Ma. The last breakup resulted in formation of the Yan-Liao aulacogen, a tectonic zone characterized by deeper material vibrancy, active faults, major igneous activity and frequent earthquakes.
文摘This paper gives an account of the research that the authors conducted on the cyclic sequences, events and evolutionary history from Proterozoic to Meso-Cenozoic in the Sino-Korean plate based on the principle of the Cosmos-Earth System. The authors divided this plate into 20 super-cyclic or super-mega-cyclic periods and more than 100 Oort periods. The research focused on important sea flooding events, uplift interruption events, tilting movement events, molar-tooth carbonate events, thermal events, polarity reversal events, karst events, volcanic explosion events and storm events, as well as types of resource areas and paleotectonic evolution. By means of the isochronous theory of the Cosmos-Earth System periodicity and based on long-excentricity and periodicity, the authors elaborately studied the paleogeographic evolution of the aulacogen of the Sino-Korean plate, the oolitic beach platform formation, the development of foreland basin and continental rift valley basin, and reconstructed the evolution
基金This work wassupported by the National Geographic Society through its Committee for Research and Exploration (Grant No. 6326-98 to Markes E. Johnson at Williams College) and the Major State Basic Research Development Program of MST, China (Grant No.
文摘Recent field studies on Upper Silurian stratigraphy and paleontology in the Inner Mongolia Autonomous Region (for short Inner Mongalia) near Bater Obo (=Bateaobao) resulted in the discovery of a small continental island with fossil invertebrates preserved as encrusters (stromatoporoids and corals) attached directly to a rocky shore surface and buried by silty clay mud. The Bater island (named herein) is 610 m ×200 m in size and composed of Ordovician igneous rock (diorite). Limestone strata dating from the Ludlow Epoch (about 420 Ma) surround the island and dip away from the igneous core in a radial pattern. The encrusting fossils occur on the sheltered (south and southeast) side of the island, whereas the north side was exposed to stronger wave activity based on a basal conglomerate unit composed of diorite boulders. This is the first record of an ancient island in China and the first report worldwide of stromatoporoids as members of a rocky-shore community. The island clearly shows distinct windward