Cryoconite samples were collected from two different climatic domains i.e.,the Sutri Dhaka glacier,western Himalaya India and Svalbard glaciers,the Spitsbergen,Arctic,to understand the elemental source and elemental d...Cryoconite samples were collected from two different climatic domains i.e.,the Sutri Dhaka glacier,western Himalaya India and Svalbard glaciers,the Spitsbergen,Arctic,to understand the elemental source and elemental deposition patterns.The data of geochemical analysis suggest that the Himalayan cryoconite samples accumulate higher concentrations as compared to the cryoconite samples of the Arctic glaciers.The concentration of lithophile elements(Cs,Li,Rb and U)was recorded higher in the cryoconite holes of the Himalayas,especially,in the lower to the higher parts of the glacier,whereas,lower concentrations were recorded in the Arctic samples.Chalcophile elements in the Himalayan cryoconites are enriched in As and Bi while the Arctic cryoconite samples show a higher concentration of Bi,Pb and As.The higher concentrations are responsible for influencing the ecosystem and in human health related issues.Siderophile elements(Co,Fe,Mn and Ni)show high concentrations in the Himalayan samples,whereas,the Arctic samples show minor variations and low elemental concentration in these elements,respectively.In addition,a few elements,such as Ag,Mg,and Ca show higher concentration in the Himalayan glacier samples.Ca also occurs in high concentrations in Arctic glacier samples.R-mode factor analysis of the Himalayas(Arctic)samples indicate that the elements are distributed in four(three)factors,explaining 89%(90%)of the variance in their elemental distribution.The Factor 1 suggests statistically significant positive loadings for most of the lithophile,chalcophile and siderophile elements of the "Himalayan" and the Arctic cryoconite samples.The sample-wise factor score distribution shows a considerable variation in the sampling locations along the glaciers of both the regions.Factors 2 and 3,demonstrate insignificant loading for most of the elements,except statistically significant positive loading in some of the elements of the both,Himalayan and Arctic "cryoconites".The higher elemental concentration in the cryoconites of the Himalayan region may be an indicator of the natural processes and/or attributed to the rapid industrialization in the Asian countries.展开更多
Kharsali village, located in the Northwest Himalaya near the confluence of the Yamuna River and Unta Gad, is situated on a thick(>150 m) paleolandslide deposit. The village is continuously being eroded at its base ...Kharsali village, located in the Northwest Himalaya near the confluence of the Yamuna River and Unta Gad, is situated on a thick(>150 m) paleolandslide deposit. The village is continuously being eroded at its base by the two rivers. Cracks are noted in most houses while the ancient Shani Temple lying to the south of the village has tilted ~5° towards the northeast. Three slope sections(S-1, S-2, S-3) were modelled and analysed to determine the displacement and shear strain patterns of the slopes. Based on surface failure conditions, potential slope instability of the Kharsali village was evaluated from 2D Finite Element Method(FEM) using Shear Strain Reduction(SSR) analysis in the Phase2 software. Results indicate a critical Stress Reduction Factor(SRF) of 1.5 for the southern edge of the village(S-1) housing the Shani Temple. The development of failure surfaces at its lower portion signifies the propagating, progressive nature of the slope. The S-2 slope section is most vulnerable to slope failure, with a critical SRF of 1.08. This has been inferred by the formation of failure surfaces with displacements of 0.05-0.08 m. The S-3 section in the northern part of the Kharsali shows highest critical SRF of 2.76. The un-metalled road section in the north of the village near S-3 hasdeveloped a failure surface with displacement of 0.003-0.004 m, and a zone of subsidence. The S-3 section is relatively stable, whereas the S-2 section is the most vulnerable portion of the village.展开更多
This paper presents a study of a newly discovered pollucite-lepidolite-albite granite(PLAG)in the Himalayan leucogranite belt,which marks the first occurrence of pollucite,a major cesium silicate mineral,in the Himala...This paper presents a study of a newly discovered pollucite-lepidolite-albite granite(PLAG)in the Himalayan leucogranite belt,which marks the first occurrence of pollucite,a major cesium silicate mineral,in the Himalayan orogenic belt(China).The rock appears at the northern part of the Gyirong pluton,coexisting with the tourmaline-bearing two-mica granite(TMG).Primary rare-metal minerals include lepidolite(Li),spodumene(Li),pollucite(Cs),cassiterite(Sn),and microlite(Ta).Micas,mainly lithian muscovite to lepidolite,contain 4.07 wt.%Li_2O and 0.76 wt.%Rb_2O on average.The average Li_2O content of the spodumene is 7.95 wt.%.Pollucite not only has an average Cs_2O content of 34 wt.%,but also has an elevated Rb_2O content of about 0.16 wt.%.Notably,this granite attains industrial grades for rare metals,specifically with Li_2O,Rb_2O,and Cs_2O contents of 0.49–1.19 wt.%,0.12–0.24 wt.%,and 0.69–2.33 wt.%,respectively.Dating results of magmatic accessory cassiterite and monazite indicated that the PLAG was formed at 19–18 Ma,slightly later than the TMG(22–20 Ma)of the Gyirong pluton.Thus,these two types of granites may form within the same magmatic system considering their pulsating intrusive contact,formation ages,and whole-rock and mineral chemical compositions.Furthermore,the abundant presence of pollucite suggests that the PLAG experienced high degrees of magmatic fractionation.In comparison to the Pusila spodumene pegmatite in the Himalaya and the Yashan topaz-lepidolite granite in Jiangxi,South China,the Gyirong PLAG exhibits different whole-rock and mineral compositions,resulting from differences in source materials and fractionation processes.Notably,the difference in fluorine(F)content may determine the degree of rare-metal element enrichment.The discovery of Gyirong PLAG highlights multiple stages and types of rare-metal mineralization in the Himalayan leucogranite belt,which is controlled by the South Tibetan Detachment System.The Cs-bearing geyserite deposit exposed along the Yarlung-Zangbo River,together with Himalayan leucogranites,constitutes two systems of rare-metal elements migration and enrichment.These two systems reflect the interaction among Earth systems across time and space,emphasizing how the Himalayan orogeny controls mineralization.As a result,the Himalayan leucogranite belt has considerable prospecting potential for cesium and rubidium resources and may be a crucial area for future exploration and resource utilization.展开更多
基金Ministry of Earth Science,New Delhi and Indian Council of Agriculture Research for their financial support
文摘Cryoconite samples were collected from two different climatic domains i.e.,the Sutri Dhaka glacier,western Himalaya India and Svalbard glaciers,the Spitsbergen,Arctic,to understand the elemental source and elemental deposition patterns.The data of geochemical analysis suggest that the Himalayan cryoconite samples accumulate higher concentrations as compared to the cryoconite samples of the Arctic glaciers.The concentration of lithophile elements(Cs,Li,Rb and U)was recorded higher in the cryoconite holes of the Himalayas,especially,in the lower to the higher parts of the glacier,whereas,lower concentrations were recorded in the Arctic samples.Chalcophile elements in the Himalayan cryoconites are enriched in As and Bi while the Arctic cryoconite samples show a higher concentration of Bi,Pb and As.The higher concentrations are responsible for influencing the ecosystem and in human health related issues.Siderophile elements(Co,Fe,Mn and Ni)show high concentrations in the Himalayan samples,whereas,the Arctic samples show minor variations and low elemental concentration in these elements,respectively.In addition,a few elements,such as Ag,Mg,and Ca show higher concentration in the Himalayan glacier samples.Ca also occurs in high concentrations in Arctic glacier samples.R-mode factor analysis of the Himalayas(Arctic)samples indicate that the elements are distributed in four(three)factors,explaining 89%(90%)of the variance in their elemental distribution.The Factor 1 suggests statistically significant positive loadings for most of the lithophile,chalcophile and siderophile elements of the "Himalayan" and the Arctic cryoconite samples.The sample-wise factor score distribution shows a considerable variation in the sampling locations along the glaciers of both the regions.Factors 2 and 3,demonstrate insignificant loading for most of the elements,except statistically significant positive loading in some of the elements of the both,Himalayan and Arctic "cryoconites".The higher elemental concentration in the cryoconites of the Himalayan region may be an indicator of the natural processes and/or attributed to the rapid industrialization in the Asian countries.
基金The grant from the Department of Science and Technology (DST)NRDMS/11/3066/2014(G) for carrying out this research is also acknowledged
文摘Kharsali village, located in the Northwest Himalaya near the confluence of the Yamuna River and Unta Gad, is situated on a thick(>150 m) paleolandslide deposit. The village is continuously being eroded at its base by the two rivers. Cracks are noted in most houses while the ancient Shani Temple lying to the south of the village has tilted ~5° towards the northeast. Three slope sections(S-1, S-2, S-3) were modelled and analysed to determine the displacement and shear strain patterns of the slopes. Based on surface failure conditions, potential slope instability of the Kharsali village was evaluated from 2D Finite Element Method(FEM) using Shear Strain Reduction(SSR) analysis in the Phase2 software. Results indicate a critical Stress Reduction Factor(SRF) of 1.5 for the southern edge of the village(S-1) housing the Shani Temple. The development of failure surfaces at its lower portion signifies the propagating, progressive nature of the slope. The S-2 slope section is most vulnerable to slope failure, with a critical SRF of 1.08. This has been inferred by the formation of failure surfaces with displacements of 0.05-0.08 m. The S-3 section in the northern part of the Kharsali shows highest critical SRF of 2.76. The un-metalled road section in the north of the village near S-3 hasdeveloped a failure surface with displacement of 0.003-0.004 m, and a zone of subsidence. The S-3 section is relatively stable, whereas the S-2 section is the most vulnerable portion of the village.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research (Grant Nos.2022QZKK0203,2019QZKK0802)the National Natural Science Foundation of China (Grant Nos.91755000,41888101,41902055)。
文摘This paper presents a study of a newly discovered pollucite-lepidolite-albite granite(PLAG)in the Himalayan leucogranite belt,which marks the first occurrence of pollucite,a major cesium silicate mineral,in the Himalayan orogenic belt(China).The rock appears at the northern part of the Gyirong pluton,coexisting with the tourmaline-bearing two-mica granite(TMG).Primary rare-metal minerals include lepidolite(Li),spodumene(Li),pollucite(Cs),cassiterite(Sn),and microlite(Ta).Micas,mainly lithian muscovite to lepidolite,contain 4.07 wt.%Li_2O and 0.76 wt.%Rb_2O on average.The average Li_2O content of the spodumene is 7.95 wt.%.Pollucite not only has an average Cs_2O content of 34 wt.%,but also has an elevated Rb_2O content of about 0.16 wt.%.Notably,this granite attains industrial grades for rare metals,specifically with Li_2O,Rb_2O,and Cs_2O contents of 0.49–1.19 wt.%,0.12–0.24 wt.%,and 0.69–2.33 wt.%,respectively.Dating results of magmatic accessory cassiterite and monazite indicated that the PLAG was formed at 19–18 Ma,slightly later than the TMG(22–20 Ma)of the Gyirong pluton.Thus,these two types of granites may form within the same magmatic system considering their pulsating intrusive contact,formation ages,and whole-rock and mineral chemical compositions.Furthermore,the abundant presence of pollucite suggests that the PLAG experienced high degrees of magmatic fractionation.In comparison to the Pusila spodumene pegmatite in the Himalaya and the Yashan topaz-lepidolite granite in Jiangxi,South China,the Gyirong PLAG exhibits different whole-rock and mineral compositions,resulting from differences in source materials and fractionation processes.Notably,the difference in fluorine(F)content may determine the degree of rare-metal element enrichment.The discovery of Gyirong PLAG highlights multiple stages and types of rare-metal mineralization in the Himalayan leucogranite belt,which is controlled by the South Tibetan Detachment System.The Cs-bearing geyserite deposit exposed along the Yarlung-Zangbo River,together with Himalayan leucogranites,constitutes two systems of rare-metal elements migration and enrichment.These two systems reflect the interaction among Earth systems across time and space,emphasizing how the Himalayan orogeny controls mineralization.As a result,the Himalayan leucogranite belt has considerable prospecting potential for cesium and rubidium resources and may be a crucial area for future exploration and resource utilization.