通过电化学剥离协同制备了3D Ni(OH)_(2)/石墨烯复合电极薄膜材料,高品质石墨烯均匀地生长在三维Ni(OH)_(2)表面,电化学性能测试表明,在2 m A/cm^(2)电流密度条件下,该电极薄膜具有优异的比电容(266 m F/cm^(2)),经过1万次的连续充放电...通过电化学剥离协同制备了3D Ni(OH)_(2)/石墨烯复合电极薄膜材料,高品质石墨烯均匀地生长在三维Ni(OH)_(2)表面,电化学性能测试表明,在2 m A/cm^(2)电流密度条件下,该电极薄膜具有优异的比电容(266 m F/cm^(2)),经过1万次的连续充放电循环测试仍然保留94.1%的容量性能。该方法为大规模生产新型高性能电极薄膜材料提供了一个简单的制备策略。展开更多
The flexible transparent supercapacitors have been considered as one of the key energy-storage components to power the smart portable electronic devices.However,it is still a challenge to explore flexible transparent ...The flexible transparent supercapacitors have been considered as one of the key energy-storage components to power the smart portable electronic devices.However,it is still a challenge to explore flexible transparent capacitive electrodes with high rate capability.Herein,conductive Ni3(HITP)2(HITP=2,3,6,7,10,11-hexaiminotriphenylene)thin films are adopted as capacitive electrodes in flexible transparent supercapacitors.The Ni3(HITP)2 electrode possesses the excellent optoelectronic property with optical transmittance(T)of 78.4%and sheet resistance(Rs)of 51.3Ωsq-1,remarkable areal capacitance(CA)of 1.63 mF cm^-2and highest scan rate up to 5000 mV s-1.The asymmetric Ni3(HITP)2//PEDOT:PSS supercapacitor(T=61%)yields a high CA of 1.06 mF cm^-2at 3μA cm-2,which maintains 77.4%as the current density increases by 50 folds.The remarkable rate capability is ascribed to the collaborative advantages of low diffusion resistance and high ion accessibility,resulting from the intrinsic conductivity,short oriented pores and large specific areas of Ni3(HITP)2 films.展开更多
文摘通过电化学剥离协同制备了3D Ni(OH)_(2)/石墨烯复合电极薄膜材料,高品质石墨烯均匀地生长在三维Ni(OH)_(2)表面,电化学性能测试表明,在2 m A/cm^(2)电流密度条件下,该电极薄膜具有优异的比电容(266 m F/cm^(2)),经过1万次的连续充放电循环测试仍然保留94.1%的容量性能。该方法为大规模生产新型高性能电极薄膜材料提供了一个简单的制备策略。
基金supported by the National Natural Science Foundation of China(NSFC)(61804082,21671108,51473078,and 61935017)Synergetic Innovation Center for Organic Electronics and Information Displays and Projects of International Cooperation and Exchanges NSFC(51811530018)+4 种基金the China Postdoctoral Science Foundation funded project(2018M642286)National Program for Support of Top-Notch Young Professionals,Scientific and Technological Innovation Teams of Colleges and Universities in Jiangsu Province(TJ215006)Priority Academic Program Development of Jiangsu Higher Education Institutions(YX03001)Jiangsu Planned Projects for Postdoctoral Research Funds(2019K047A)Science Foundation of Nanjing University of Posts and Telecommunications(NY217142)。
文摘The flexible transparent supercapacitors have been considered as one of the key energy-storage components to power the smart portable electronic devices.However,it is still a challenge to explore flexible transparent capacitive electrodes with high rate capability.Herein,conductive Ni3(HITP)2(HITP=2,3,6,7,10,11-hexaiminotriphenylene)thin films are adopted as capacitive electrodes in flexible transparent supercapacitors.The Ni3(HITP)2 electrode possesses the excellent optoelectronic property with optical transmittance(T)of 78.4%and sheet resistance(Rs)of 51.3Ωsq-1,remarkable areal capacitance(CA)of 1.63 mF cm^-2and highest scan rate up to 5000 mV s-1.The asymmetric Ni3(HITP)2//PEDOT:PSS supercapacitor(T=61%)yields a high CA of 1.06 mF cm^-2at 3μA cm-2,which maintains 77.4%as the current density increases by 50 folds.The remarkable rate capability is ascribed to the collaborative advantages of low diffusion resistance and high ion accessibility,resulting from the intrinsic conductivity,short oriented pores and large specific areas of Ni3(HITP)2 films.