期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Research and Application of a Multi-Field Co-Simulation Data Extraction Method Based on Adaptive Infinitesimal Element
1
作者 Changfu Wan Wenqiang Li +2 位作者 Sitong Ling Yingdong Liu Jiahao Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期321-348,共28页
Regarding the spatial profile extraction method of a multi-field co-simulation dataset,different extraction directions,locations,and numbers of profileswill greatly affect the representativeness and integrity of data.... Regarding the spatial profile extraction method of a multi-field co-simulation dataset,different extraction directions,locations,and numbers of profileswill greatly affect the representativeness and integrity of data.In this study,a multi-field co-simulation data extractionmethod based on adaptive infinitesimal elements is proposed.Themultifield co-simulation dataset based on related infinitesimal elements is constructed,and the candidate directions of data profile extraction undergo dimension reduction by principal component analysis to determine the direction of data extraction.Based on the fireworks algorithm,the data profile with optimal representativeness is searched adaptively in different data extraction intervals to realize the adaptive calculation of data extraction micro-step length.The multi-field co-simulation data extraction process based on adaptive microelement is established and applied to the data extraction process of the multi-field co-simulation dataset of the sintering furnace.Compared with traditional data extraction methods for multi-field co-simulation,the approximate model constructed by the data extracted from the proposed method has higher construction efficiency.Meanwhile,the relative maximum absolute error,root mean square error,and coefficient of determination of the approximationmodel are better than those of the approximation model constructed by the data extracted from traditional methods,indicating higher accuracy,it is verified that the proposed method demonstrates sound adaptability and extraction efficiency. 展开更多
关键词 Multi-field co-simulation adaptive infinitesimal elements principal component analysis fireworks algorithm sintering furnace simulation
下载PDF
SIMULATION OF THE CHANGE OF SINTERING NECK BETWEEN TWO GRAINS IN TWO DIMENSIONS 被引量:3
2
作者 Y.Y.Zhu S.H.Liang +2 位作者 Z.J.Zhan P.Xiao Z.K.Fan 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2006年第6期397-404,共8页
A modified two-sphere model of sintering neck has been proposed, wherein three diffusion mechanisms including surface diffusion, grain-boundary diffusion and coupled surface and grain-boundary diffusion are assumed. S... A modified two-sphere model of sintering neck has been proposed, wherein three diffusion mechanisms including surface diffusion, grain-boundary diffusion and coupled surface and grain-boundary diffusion are assumed. Sintering neck is appropriately simulated using the modified model. The dynamic change of sintering neck is presented using the simulation. The variational shape of sintering neck in surface diffusion mechanism is continuous, whereas in grain-boundary diffusion mechanism, besides the variational shape of sintering neck being continuous, the center distance between the particles is also assumed to contract. However, the variational shape of sintering neck in coupling diffusion mechanism is integrated using the two diffusion mechanisms mentioned above. 展开更多
关键词 sintering simulation neck growth surface diffusion grain-boundary diffusion
下载PDF
Simulation of the neck growth of non-isometric biosphere during initial sintering 被引量:1
3
作者 Jixiang DU Shuhua LIANG Xianhui WANG Zhikang FAN 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2009年第4期263-274,共12页
Because powders are mostly non-isometric during the sintering process, copper powders were chosen to study the effects of four material transport mechanisms, including surface diffusion, grain-boundary diffusion, volu... Because powders are mostly non-isometric during the sintering process, copper powders were chosen to study the effects of four material transport mechanisms, including surface diffusion, grain-boundary diffusion, volume diffusion, and multi-couplings. These material transport mechanisms were studied with respect to sintering neck growth of a non-isometric biosphere during initial sintering. The evolution of the neck growth in the four transport mechanisms was simulated by Visual C++ as well based on the model of different particles. The results show that the increase of the sintering temperature, both the grain-boundary diffusion and volume diffusion play primary roles in neck growth, while surface diffusion gradually becomes the secondary mechanism. Both the sintered neck and the shrinkage of the two centers increase with increasing temperature by means of the coupling diffusion mechanism. The radius of the sintering neck decreased, and the shrinkage rate of the two centers increased with an increase of the diameter ratio of the two spheres. 展开更多
关键词 sintering simulation Non-isometric biosphere model Diffusion mechanism sintering neck
下载PDF
Three-dimensional simulation of sintering crunodes of metal powders or fibers by level set method 被引量:1
4
作者 谌东东 郑洲顺 +2 位作者 王建忠 汤慧萍 曲选辉 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2446-2455,共10页
The difference of sintering crunodes of metal powders and fibers is discussed. The mathematical model of the surface diffusion described by the difference in mean curvature is defined as a Hamilton-Jacobi-type equatio... The difference of sintering crunodes of metal powders and fibers is discussed. The mathematical model of the surface diffusion described by the difference in mean curvature is defined as a Hamilton-Jacobi-type equation, and the model is numerically solved by the level set method. The three-dimensional numerical simulations of two metal powders and fibers(the fiber angle is 0° or 90°) are implemented by this mathematical model, respectively. The numerical simulation results accord with the experimental ones. The sintering neck growth trends of metal powders and metal fibers are similar. The sintering neck radius of metal fibers is larger than that of metal powders. The difference of the neck radius is caused by the difference of geometric structure which makes an important influence on the curvature affecting the migration rate of atoms. 展开更多
关键词 metal fiber metal powder sintering crunodes mean curvature three-dimensional simulation
下载PDF
Microstructure improvement related coercivity enhancement for sintered NdFeB magnets after optimized additional heat treatment 被引量:5
5
作者 Qing Zhou Wei Li +5 位作者 Yuan Hong Lizhong Zhao Xichun Zhong Hongya Yu Lili Huang Zhongwu Liu 《Journal of Rare Earths》 SCIE EI CAS CSCD 2018年第4期379-384,共6页
The micro structure, especially the Nd-rich phase and the grain boundary, in sintered NdFeB magnets plays an important role in magnetic reversal and coercivity mechanism. To better understand the effects of the micros... The micro structure, especially the Nd-rich phase and the grain boundary, in sintered NdFeB magnets plays an important role in magnetic reversal and coercivity mechanism. To better understand the effects of the microstructure on the coercivity, we investigated the microstructure and properties improvements of a commercial sintered NdFeB magnet after optimized additional heat treatment. The coercivity is enhanced from 1399 to 1560 kA/m. This enhancement has been explained in terms of the evolution of the grain boundary structure, and the formation of continuous thin layers of Nd-rich phase is important for high coercivity. The micromagnetic simulation together with the numerical analysis based on the nucleation model suggest that the reversed magnetic domains nucleate mainly at the interface of multijunctions of Nd_2 Fe_(14)B grains with high stray fields during the demagnetization process. Both improved anisotropy fields at grain boundaries and reduced stray fields at multi-junction Nd-rich phases contribute to the coercivity enhancement. This work has importance in understanding the crucial micro structure parameters and enhancing the obtainable properties for sintered NdFeB magnets. 展开更多
关键词 Sintered NdFeB magnets Microstructure Coercivity Micromagnetic simulation Heat treatment Rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部