TA1 P-Ti/AA6061 composite plate was produced by oxidizing the surface of the titanium plate and adopting a cold roll bonding process.The results revealed that the oxide film(Ti6O)prepared on the surface of TA1 pure ti...TA1 P-Ti/AA6061 composite plate was produced by oxidizing the surface of the titanium plate and adopting a cold roll bonding process.The results revealed that the oxide film(Ti6O)prepared on the surface of TA1 pure titanium was easy to crack during the cold roll bonding,thereby promoting the formation of an effective mechanical interlock at the interface,which can effectively reduce the minimum reduction rate of the composite plates produced by cold rolling of titanium and aluminium plates.Moreover,the composite plate subjected to oxidation treatment exhibited high shear strength,particularly at a 43%reduction rate,achieving a commendable value of 117 MPa.Based on oxidation treatment and different reduction rates,the annealed composite plates at temperatures of 400,450,and 500°C displayed favorable resistance to interface delamination,highlighting their remarkable strength-plasticity compatibility as evidenced by a maximum elongation of 31.845%.展开更多
The composite microbial system of MC1 was used to degrade corn stalk in order to determine properties of the degraded products as well as bacterial composition of MC1. Results indicated that the pH of the fermentation...The composite microbial system of MC1 was used to degrade corn stalk in order to determine properties of the degraded products as well as bacterial composition of MC1. Results indicated that the pH of the fermentation broth was typical of lignocellulose degradation by MC1, decreasing in the early phase and increasing in later stages of the degradation. The microbial biomass peaked on the day 3 after degradation. The MC1 efficiently degraded the corn stalk by nearly 70% during which its cellulose content decreased by 71.2%, hemicellulose by 76.5% and lignin by 24.6%. The content of water-soluble carbohydrates (WSC) in the fermentation broth increased progressively during the first three days, and decreased thereafter, suggesting an accumulation of WSC in the early phase of the degradation process. Total levels of various volatile products peaked in the third day after degradation, and 7 types of volatile products were detected in the fermentation broth. These were ethanol, acetic acid, 1,2-ethanediol, propanoic acid, butanoic acid, 3- methyl-butanoic acid and glycerine. Six major compounds were quantitatively analysed and the contents of each compound were ethanol (0.584 g/L), acetic acid (0.735 g/L), 1,2-ethanediol (0.772 g/L), propanoic acid (0.026 g/L), butanoic acid (0.018 g/L) and glycerine (4.203 g/L). Characterization of bacterial cells collected from the culture solution, based on 16S rDNA PCR-DGGE analysis of DNAs, showed that the composition of bacterial community in MC1 coincided basically with observations from previous studies. This indicated that the structure of MC1 is very stable during degradation of different lignocellulose materials.展开更多
Rapid and accurate access to large-scale,high-resolution crop-type distribution maps is important for agricultural management and sustainable agricultural development.Due to the limitations of remote sensing image qua...Rapid and accurate access to large-scale,high-resolution crop-type distribution maps is important for agricultural management and sustainable agricultural development.Due to the limitations of remote sensing image quality and data processing capabilities,large-scale crop classification is still challenging.This study aimed to map the distribution of crops in Heilongjiang Province using Google Earth Engine(GEE)and Sentinel-1 and Sentinel-2 images.We obtained Sentinel-1 and Sentinel-2 images from all the covered study areas in the critical period for crop growth in 2018(May to September),combined monthly composite images of reflectance bands,vegetation indices and polarization bands as input features,and then performed crop classification using a Random Forest(RF)classifier.The results show that the Sentinel-1 and Sentinel-2 monthly composite images combined with the RF classifier can accurately generate the crop distribution map of the study area,and the overall accuracy(OA)reached 89.75%.Through experiments,we also found that the classification performance using time-series images is significantly better than that using single-period images.Compared with the use of traditional bands only(i.e.,the visible and near-infrared bands),the addition of shortwave infrared bands can improve the accuracy of crop classification most significantly,followed by the addition of red-edge bands.Adding common vegetation indices and Sentinel-1 data to the crop classification improved the overall classification accuracy and the OA by 0.2 and 0.6%,respectively,compared to using only the Sentinel-2 reflectance bands.The analysis of timeliness revealed that when the July image is available,the increase in the accuracy of crop classification is the highest.When the Sentinel-1 and Sentinel-2 images for May,June,and July are available,an OA greater than 80%can be achieved.The results of this study are applicable to large-scale,high-resolution crop classification and provide key technologies for remote sensing-based crop classification in small-scale agricultural areas.展开更多
Recyclable Sip/1199Al composites with high volume fraction of Si particles were fabricated by squeeze-casting method. The microstructure was observed and the thermal properties were tested and calculated by theoretica...Recyclable Sip/1199Al composites with high volume fraction of Si particles were fabricated by squeeze-casting method. The microstructure was observed and the thermal properties were tested and calculated by theoretical models.Sip/1199Al composites are all dense and macroscopically homogeneous without any particle clustering.The interface of Sip/1199Al is clean,smooth and free from any interfacial reaction products.Sip/1199Al composites have high thermal diffusivity(65.083 mm 2/s)and thermal conductivity (168.211 W/(m·℃)).The specific heat capacity of Sip/1199Al composites at constant pressure increases while the thermal diffusivity and thermal conductivity decrease with increasing temperature.Annealing treatment could improve the thermal properties.The results of Maxwell model and P.G.model are higher than those of experiment.展开更多
A novel 1-3-2 piezoelectric composite has been developed,which consists of piezoelectric ceramic plate and 1-3 piezoelectric composite.The composite was fabricated by dicing PZT ceramic along mutual perpendicular two ...A novel 1-3-2 piezoelectric composite has been developed,which consists of piezoelectric ceramic plate and 1-3 piezoelectric composite.The composite was fabricated by dicing PZT ceramic along mutual perpendicular two directions and then filling epoxy into grooves.The piezoelectric and electromechanical properties of the novel composite were determined. The results show a coefficient d_ (33) of 405pC/N,a vibration displacement of 113.5pm,an acoustic impendence of 13.3 Mraly, a bandwidth of 12kHz and a thickness electromechanical coupling coefficient of 0.56.展开更多
The creep properties of as-cast Mg-9Al-1Si alloy and Mg-9Al-1Si-1SiC composite were compared.The results show that Mg-9A1-lSi-lSiC composite performs a better creep resistance than that of Mg-9Al-1Si alloy at constant...The creep properties of as-cast Mg-9Al-1Si alloy and Mg-9Al-1Si-1SiC composite were compared.The results show that Mg-9A1-lSi-lSiC composite performs a better creep resistance than that of Mg-9Al-1Si alloy at constant temperature and stress(473 K,70MPa).Besides,the creep behavior of Mg-9Al-1 Si-1SiC composite at various temperature from 448 K to 498 K and under stresses of 70-90 MPa were systematically investigated.The Mg-9Al-1 Si-1SiC composite exhibited a stress exponent from 5.5 to 6.9 and the creep activation energy fell within the range of 86-111 kJ/mol.The results showed that the creep mechanism of Mg-9Al-1Si-1SiC composite was mainly attributed to the effects of secondary phase strengthening mechanism and dislocation climb mechanism.展开更多
This paper reports on a new microporous composite silica membrane prepared via acid-catalyzed polymeric route of sol-gel method with tetraethylorthosilicate(TEOS)and a bridged silsesquioxane[1,2-bis(triethoxysilyl)eth...This paper reports on a new microporous composite silica membrane prepared via acid-catalyzed polymeric route of sol-gel method with tetraethylorthosilicate(TEOS)and a bridged silsesquioxane[1,2-bis(triethoxysilyl)ethane, BTESE]as precursors.A stable nano-sized composite silica sol with a mean volume size of^5 nm was synthesized. A 150 nm-thick defect-free composite silica membrane was deposited on disk support consisting of macroporous α-Al2O3 and mesoporousγ-Al2O3 intermediate layer by using dip-coating approach,followed by calcination under pure nitrogen atmosphere.The composite silica membranes exhibit molecular sieve properties for small gases like H2,CO2,O2,N2,CH4 and SF6 with hydrogen permeances in the range of(1-4)×10 -7mol·m -2·s -1·Pa -1(measured at 200°C,3.0×105 Pa).With respect to the membrane calcined at 500°C,it is found that the permselectivities of H 2 (0.289 nm)with respect to N2(0.365 nm),CH4(0.384 nm)and SF6(0.55 nm)are 22.9,42 and>1000,respectively, which are all much higher than the corresponding Knudsen values(H2/N2=3.7,H2/CH4=2.8,and H2/SF6=8.5).展开更多
Two-layer structure consisting of PS/PMMA-DR1 composite film planar waveguide layer on porous silicon cladding layer was fabricated in our experiment. The induced grating based on the third nonlinear optical propertie...Two-layer structure consisting of PS/PMMA-DR1 composite film planar waveguide layer on porous silicon cladding layer was fabricated in our experiment. The induced grating based on the third nonlinear optical properties was formed by interaction of two Nd∶YAG laser beams at 1064nm in the porous silicon/PMMA-DR1 waveguide. The diffraction efficiency of the first order diffracted light is measured to be about 0.2% of the total output.展开更多
In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluste...In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluster analysis, hyper-parameter test and other models, and SPSS, Python and other tools were used to obtain the classification rules of glass products under different fluxes, sub classification under different chemical compositions, hyper-parameter K value test and rationality analysis. Research can provide theoretical support for the protection and restoration of ancient glass relics.展开更多
A 1-octadecanol(OD)/1,3:2,4-di-(3,4-dimethyl) benzylidene sorbitol(DMDBS)/expander graphite(EG) composite was prepared as a form-stable phase change material(PCM) by vacuum melting method. The results of fie...A 1-octadecanol(OD)/1,3:2,4-di-(3,4-dimethyl) benzylidene sorbitol(DMDBS)/expander graphite(EG) composite was prepared as a form-stable phase change material(PCM) by vacuum melting method. The results of field emission-scanning electron microscopy(FE-SEM) showed that 1-octadecanol was restricted in the three-dimensional network formed by DMDBS and the honeycomb network formed by EG. X-ray diffraction(XRD) and Fourier transform infrared spectroscopy(FT-IR) results showed that no chemical reaction occurred among the components of composite PCM in the preparation process. The gel-to-sol transition temperature of the composite PCMs containing DMDBS was much higher than the melting point of pure 1-octadecanol. The improvements in preventing leakage and thermal stability limits were mainly attributed to the synergistic effect of the three-dimensional network formed by DMDBS and the honeycomb network formed by EG. Differential scanning calorimeter(DSC) was used to determine the latent heat and phase change temperature of the composite PCMs. During melting and freezing process the latent heat values of the PCM with the composition of 91% OD/3% DMDBS/6% EG were 214.9 and 185.9 kJ·kg-1, respectively. Its degree of supercooling was only 0.1 ℃. Thermal constant analyzer results showed that its thermal conductivity(κ) changed up to roughly 10 times over that of OD/DMDBS matrix.展开更多
The cathode material La1-xSrxCuO3-δ(x=0.15, 0.2, 0.3, 0.4) was synthesized by a sol-gel method. X-ray diffraction reveals that a single phase of perovskite is formed. The investigation of the electrical properties su...The cathode material La1-xSrxCuO3-δ(x=0.15, 0.2, 0.3, 0.4) was synthesized by a sol-gel method. X-ray diffraction reveals that a single phase of perovskite is formed. The investigation of the electrical properties suggests that La0.7Sr0.3CuO3-δ has the highest electrical conductivity. La0.7Sr0.3CuO3-δ powder was mixed with different amount SDC (Sm0.15Ce0.85O1.925) powder (5wt.%-30wt.%) as composite cathodes. Electrochemical properties of the composite cathodes were researched further. Investigation suggests that the addition of appropriate amount SDC to La0.7Sr0.3CuO3-δ can improve the electrochemical properties and obtain better cathodic performance. Using La0.7Sr0.3CuO3-δ-SDC composite materials as a cathode based on SDC electrolyte, higher current density and power density at intermediate temperatures can be obtained.展开更多
CaN-based heterostructures with an InAlCaN/AlCaN composite barrier on sapphire (0001) substrates are grown by a low-pressure metal organic chemical vapor deposition system. Compositions of the InAiGaN layer are dete...CaN-based heterostructures with an InAlCaN/AlCaN composite barrier on sapphire (0001) substrates are grown by a low-pressure metal organic chemical vapor deposition system. Compositions of the InAiGaN layer are determined by x-ray photoelectron spectroscopy, structure and crystal quality of the heterostruetures are identified by high resolution x-ray diffraction, surface morphology of the samples are examined by an atomic force microscope, and Hall effect and capacitance-voltage measurements are performed at room temperature to evaluate the electrical properties of heterostructures. The Al/In ratio of the InAlGaN layer is 4.43, which indicates that the InAlCaN quaternary layer is nearly lattice-matched to the CaN channel. Capacitance-voltage results show that there is no parasitic channel formed between the InAIGaN layer and the AlCaN layer. Compared with the InAl- CaN/CaN heterostructure, the electrical properties of the InAlCaN/AlGaN/GaN heterostructure are improved obviously. Influences of the thickness of the AlGaN layer on the electrical properties of the heterostructures are studied. With the optimal thickness of the AlGaN layer to be 5 nm, the 2DEG mobility, sheet density and the sheet resistance of the sample is 1889.61 cm2/V.s, 1.44 × 10^13 cm-2 and as low as 201.1 Ω/sq, respectively.展开更多
A novel composite material(TD)composed of TS-1 microcrystalline and dendritic mesoporous silica nanospheres(DMSNs)was successfully prepared.The TD composite material had open pore structure and large specific surface ...A novel composite material(TD)composed of TS-1 microcrystalline and dendritic mesoporous silica nanospheres(DMSNs)was successfully prepared.The TD composite material had open pore structure and large specific surface area,which was conducive to the mass transfer of reactants and products.The Ti element in TS-1 could be used as an electron assistant,and the spillover d-electrons were conducive to the improvement of the sulfidation and dispersion of MoS_(2),thereby forming more type II MoS_(2) active phases.The incorporation of Ti could bring more Brønsted(B)and Lewis(L)acid,which was conducive to the hydrogenation pathway(HYD)selectivity(41.2%)of dibenzothiophene(DBT)hydrodesulfurization(HDS)and isomerization(ISO)route selectivity(21.9%)of 4,6-dimethyldibenzothiophene(4,6-DMDBT)HDS,thus improve the HDS activity of DBT and 4,6-DMDBT.NiMo/TD-70(Aging temperature=70℃)had the best HDS activities of DBT(99.0%)and 4,6-DMDBT(93.7%)due to its large open pore structure,good acidity,suitable metal-support interaction(MSI)and perfect dispersion of the metallic active sites.展开更多
Environmental safety issues involved in transgenic plants have become the concern of researchers, practitioners and policy makers in recent years. Potential differences between Bt maize(ND1324 and ND2353 expressing t...Environmental safety issues involved in transgenic plants have become the concern of researchers, practitioners and policy makers in recent years. Potential differences between Bt maize(ND1324 and ND2353 expressing the insecticidal Cry1Ab protein) and near-isogenic non-Bt varieties(ND1392 and ND223) in their influence on the composite microbial system of MC1 during the fermentation process were studied during 2011-2012. Cry1Ab protein in Bt maize residues didn't affect characteristics of lignocellulose degradation by MC1, pH of fermentation broth decreasing at initial stage and increasing at later stage of degradation. The quality of various volatile products in fermentation broth showed that no signifi cant difference of residues fermentation existed between Bt maize and non-Bt maize. During the fermentation MC1 efficiently degraded maize residues by 83%-88%, and cellulose, hemicelluloses and lignin content decreased by 70%-72%, 72%-75% and 30%-37%, respectively. Besides that, no consistent difference was found between Bt and non-Bt maize residues lignocellulose degradation by MC1 during the fermentation process. MC1 degraded 88%-89% Cry1Ab protein in Bt maize residues, and in the fermentation broth of MC1 and bacteria of MC1 Cry1Ab protein was not detected. DGGE profi le analyses revealed that the microbial community drastically changed during 1-3 days and became stable until the 9th day. Though the dominant strains at different fermentation stages had signifi cantly changed, no difference on the dominant strains was observed between Bt and non-Bt maize at different stages. Our study indicated that Cry1Ab protein did not infl uence the growth characteristic of MC1.展开更多
A series of Cd1-xZnxS/K2La2Ti3O10 composites were synthesized via a simple co-precipitation method. The prepared samples were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), X-ray energy di...A series of Cd1-xZnxS/K2La2Ti3O10 composites were synthesized via a simple co-precipitation method. The prepared samples were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), X-ray energy dispersive spectroscopy(EDX), ultraviolet-visible diffuse reflection(UV-Vis), X-ray photoelectron spectroscopy(XPS) and photoluminescence(PL) measurements. The composite structures consisted of Cd1-xZnxS nanoparticles evenly distributed on the surface of K2La2Ti3O10. The absorption edge of K2La2Ti3O10 shifted to the visible light region upon introduction of the Cd1-xZnxS nanoparticles. The photocatalytic activities of the catalysts were evaluated by hydrogen production under visible light irradiation. The prepared Cd0.8Zn0.2S(30wt%)/K2La2Ti3O10 exhibited higher photocatalytic activity, evolving 6.92 mmol/g H2 under visible light irradiation for 3 h. The promoted photocatalytic activity of the composites was attributed to the synergistic effect between Cd1-xZnxS and K2La2Ti3O10, which resulted in enhanced separation of photogenerated electrons and holes.展开更多
In the present work, we investigate the structural and optical properties of Znx-1MgxO composites prepared by the standard sintering method at 1200?C during 24 hours and doped with different percentages of magnesium x...In the present work, we investigate the structural and optical properties of Znx-1MgxO composites prepared by the standard sintering method at 1200?C during 24 hours and doped with different percentages of magnesium x between 0% and 40%. For this purpose, we have used the X-ray diffraction (XRD) and the atomic force microscopy (AFM) to study the effect of the magnesium’s proportion on the crystalline and morphology proprieties of the obtained samples. XRD analysis showed that all films are polycrystalline with a hexagonal wurtzite structure, with an orientation of the grains according to directions (0002) and (10-10). The AFM characterisation show that the degree of surface roughness (RMS) increases with the increasing of MgO content. Optical properties of the ceramics were investigated by Absorbance and Reflectance measurements at room temperature in the wavelength range 200 - 2400 nm. Optical band gap energies (Eg) were determined. Further cathodoluminescence and dielectric measurements would be carried out to study the influence of MgO doping on the dielectric and luminescent properties of the ZnMgO ceramics.展开更多
Capital market is one of the drivers of the economy through the formation of capital investor excess as well as an indicator of a country's economy. Movement of stock price index is often influenced by many factors, ...Capital market is one of the drivers of the economy through the formation of capital investor excess as well as an indicator of a country's economy. Movement of stock price index is often influenced by many factors, derived from the company's performance, monetary factor, and changes in world oil prices. This study highlights the problem in world oil prices due to political turmoil in the Middle East. The samples are taken from the Jakarta Composite Stock Price Index (JCI), oil prices, Indonesian inflation rate, Certificate of Bank Indonesia's (CBI) rate, and the reserve assets, during the period from January 2005 to December 2011 (84 months). Using the data published by the Bank of Indonesia, reports of the Central Bureau of Statistics (Biro Pusat Statistik, BPS), and other relevant sources, the data analyzed through the Eviews 7.1. The main objective of this study is to examine the effect of oil prices, foreign stock price index, and monetary variables (inflation rate, CBI rate, country's foreign reserves, and others) toward the JCI analyzed through the error correction model (ECM). Hypothesis testing with the F-test for the 95% confidence level indicates that the oil price, exchange rate (Indonesian Rupiah (IDR)/United States Dollar (USD)), CBI rate, foreign exchange reserves, the Dow Jones Index, and the Taiwan stock index, both simultaneously as well as partially have a significant influence on the JCI.展开更多
基金supports from the National Natural Science Foundation of China(Nos.52075472,52004242)the National Key Research and Development Program of China(No.2018YFA0707300)the Natural Science Foundation of Hebei Province,China(No.E2020203001)。
文摘TA1 P-Ti/AA6061 composite plate was produced by oxidizing the surface of the titanium plate and adopting a cold roll bonding process.The results revealed that the oxide film(Ti6O)prepared on the surface of TA1 pure titanium was easy to crack during the cold roll bonding,thereby promoting the formation of an effective mechanical interlock at the interface,which can effectively reduce the minimum reduction rate of the composite plates produced by cold rolling of titanium and aluminium plates.Moreover,the composite plate subjected to oxidation treatment exhibited high shear strength,particularly at a 43%reduction rate,achieving a commendable value of 117 MPa.Based on oxidation treatment and different reduction rates,the annealed composite plates at temperatures of 400,450,and 500°C displayed favorable resistance to interface delamination,highlighting their remarkable strength-plasticity compatibility as evidenced by a maximum elongation of 31.845%.
基金This work was supported by the National Natural Science Foundation of China(No.30571088)the National Key Technology Research and Development Program of China during the 11th Five-Year Plan Period(No.2006BAD07A01,2006BAD25B04).
文摘The composite microbial system of MC1 was used to degrade corn stalk in order to determine properties of the degraded products as well as bacterial composition of MC1. Results indicated that the pH of the fermentation broth was typical of lignocellulose degradation by MC1, decreasing in the early phase and increasing in later stages of the degradation. The microbial biomass peaked on the day 3 after degradation. The MC1 efficiently degraded the corn stalk by nearly 70% during which its cellulose content decreased by 71.2%, hemicellulose by 76.5% and lignin by 24.6%. The content of water-soluble carbohydrates (WSC) in the fermentation broth increased progressively during the first three days, and decreased thereafter, suggesting an accumulation of WSC in the early phase of the degradation process. Total levels of various volatile products peaked in the third day after degradation, and 7 types of volatile products were detected in the fermentation broth. These were ethanol, acetic acid, 1,2-ethanediol, propanoic acid, butanoic acid, 3- methyl-butanoic acid and glycerine. Six major compounds were quantitatively analysed and the contents of each compound were ethanol (0.584 g/L), acetic acid (0.735 g/L), 1,2-ethanediol (0.772 g/L), propanoic acid (0.026 g/L), butanoic acid (0.018 g/L) and glycerine (4.203 g/L). Characterization of bacterial cells collected from the culture solution, based on 16S rDNA PCR-DGGE analysis of DNAs, showed that the composition of bacterial community in MC1 coincided basically with observations from previous studies. This indicated that the structure of MC1 is very stable during degradation of different lignocellulose materials.
基金funded by the National Key R&D Program of China(2017YFD0201803)the Talent Recruitment Project of Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences.
文摘Rapid and accurate access to large-scale,high-resolution crop-type distribution maps is important for agricultural management and sustainable agricultural development.Due to the limitations of remote sensing image quality and data processing capabilities,large-scale crop classification is still challenging.This study aimed to map the distribution of crops in Heilongjiang Province using Google Earth Engine(GEE)and Sentinel-1 and Sentinel-2 images.We obtained Sentinel-1 and Sentinel-2 images from all the covered study areas in the critical period for crop growth in 2018(May to September),combined monthly composite images of reflectance bands,vegetation indices and polarization bands as input features,and then performed crop classification using a Random Forest(RF)classifier.The results show that the Sentinel-1 and Sentinel-2 monthly composite images combined with the RF classifier can accurately generate the crop distribution map of the study area,and the overall accuracy(OA)reached 89.75%.Through experiments,we also found that the classification performance using time-series images is significantly better than that using single-period images.Compared with the use of traditional bands only(i.e.,the visible and near-infrared bands),the addition of shortwave infrared bands can improve the accuracy of crop classification most significantly,followed by the addition of red-edge bands.Adding common vegetation indices and Sentinel-1 data to the crop classification improved the overall classification accuracy and the OA by 0.2 and 0.6%,respectively,compared to using only the Sentinel-2 reflectance bands.The analysis of timeliness revealed that when the July image is available,the increase in the accuracy of crop classification is the highest.When the Sentinel-1 and Sentinel-2 images for May,June,and July are available,an OA greater than 80%can be achieved.The results of this study are applicable to large-scale,high-resolution crop classification and provide key technologies for remote sensing-based crop classification in small-scale agricultural areas.
基金Project(HITQNJS.2008.057)supported by Development Program for Outstanding Young Teachers in Harbin Institute of Technology,China
文摘Recyclable Sip/1199Al composites with high volume fraction of Si particles were fabricated by squeeze-casting method. The microstructure was observed and the thermal properties were tested and calculated by theoretical models.Sip/1199Al composites are all dense and macroscopically homogeneous without any particle clustering.The interface of Sip/1199Al is clean,smooth and free from any interfacial reaction products.Sip/1199Al composites have high thermal diffusivity(65.083 mm 2/s)and thermal conductivity (168.211 W/(m·℃)).The specific heat capacity of Sip/1199Al composites at constant pressure increases while the thermal diffusivity and thermal conductivity decrease with increasing temperature.Annealing treatment could improve the thermal properties.The results of Maxwell model and P.G.model are higher than those of experiment.
基金supported by the Beijing Natural Science Foundation of China(No.KZ200410772016)Academic Innovative Team Program of University in Beijing.
文摘A novel 1-3-2 piezoelectric composite has been developed,which consists of piezoelectric ceramic plate and 1-3 piezoelectric composite.The composite was fabricated by dicing PZT ceramic along mutual perpendicular two directions and then filling epoxy into grooves.The piezoelectric and electromechanical properties of the novel composite were determined. The results show a coefficient d_ (33) of 405pC/N,a vibration displacement of 113.5pm,an acoustic impendence of 13.3 Mraly, a bandwidth of 12kHz and a thickness electromechanical coupling coefficient of 0.56.
基金Shanxi provice scientific facilities and instruments shared service platform of magnesium-based matierals electric impulse aided forming(201805D141005)National Natural Science Foundation of China(51404166,51704209,U1810208)+3 种基金Science and Technology Major Project of Shanxi province(20191102008,20191102007,20181101008)Natural Science Foundation of Shanxi Province(201701D121045)Shanxi Province Science Foundation for Youths(2016021063)The Projects of International Cooperation in Shanxi(201803D421086).
文摘The creep properties of as-cast Mg-9Al-1Si alloy and Mg-9Al-1Si-1SiC composite were compared.The results show that Mg-9A1-lSi-lSiC composite performs a better creep resistance than that of Mg-9Al-1Si alloy at constant temperature and stress(473 K,70MPa).Besides,the creep behavior of Mg-9Al-1 Si-1SiC composite at various temperature from 448 K to 498 K and under stresses of 70-90 MPa were systematically investigated.The Mg-9Al-1 Si-1SiC composite exhibited a stress exponent from 5.5 to 6.9 and the creep activation energy fell within the range of 86-111 kJ/mol.The results showed that the creep mechanism of Mg-9Al-1Si-1SiC composite was mainly attributed to the effects of secondary phase strengthening mechanism and dislocation climb mechanism.
基金Supported by the National Natural Science Foundation of China(20906047)the State Key Laboratory of Chemical Engineering(SKL-ChE-09A01)the State Key Laboratory of Materials-Oriented Chemical Engineering(ZK201002)
文摘This paper reports on a new microporous composite silica membrane prepared via acid-catalyzed polymeric route of sol-gel method with tetraethylorthosilicate(TEOS)and a bridged silsesquioxane[1,2-bis(triethoxysilyl)ethane, BTESE]as precursors.A stable nano-sized composite silica sol with a mean volume size of^5 nm was synthesized. A 150 nm-thick defect-free composite silica membrane was deposited on disk support consisting of macroporous α-Al2O3 and mesoporousγ-Al2O3 intermediate layer by using dip-coating approach,followed by calcination under pure nitrogen atmosphere.The composite silica membranes exhibit molecular sieve properties for small gases like H2,CO2,O2,N2,CH4 and SF6 with hydrogen permeances in the range of(1-4)×10 -7mol·m -2·s -1·Pa -1(measured at 200°C,3.0×105 Pa).With respect to the membrane calcined at 500°C,it is found that the permselectivities of H 2 (0.289 nm)with respect to N2(0.365 nm),CH4(0.384 nm)and SF6(0.55 nm)are 22.9,42 and>1000,respectively, which are all much higher than the corresponding Knudsen values(H2/N2=3.7,H2/CH4=2.8,and H2/SF6=8.5).
基金National Natural Science Foundation of China(60067001) West Glory Project of Chinese Academy of Science(2003XJDX) +1 种基金Excellent Youth Scholar Award Foundation of Xinjiang(XJEDU2004E02)
文摘Two-layer structure consisting of PS/PMMA-DR1 composite film planar waveguide layer on porous silicon cladding layer was fabricated in our experiment. The induced grating based on the third nonlinear optical properties was formed by interaction of two Nd∶YAG laser beams at 1064nm in the porous silicon/PMMA-DR1 waveguide. The diffraction efficiency of the first order diffracted light is measured to be about 0.2% of the total output.
文摘In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluster analysis, hyper-parameter test and other models, and SPSS, Python and other tools were used to obtain the classification rules of glass products under different fluxes, sub classification under different chemical compositions, hyper-parameter K value test and rationality analysis. Research can provide theoretical support for the protection and restoration of ancient glass relics.
基金Funded by Science and Technology Support Program of Hubei Province of China(No.2015BAA111)
文摘A 1-octadecanol(OD)/1,3:2,4-di-(3,4-dimethyl) benzylidene sorbitol(DMDBS)/expander graphite(EG) composite was prepared as a form-stable phase change material(PCM) by vacuum melting method. The results of field emission-scanning electron microscopy(FE-SEM) showed that 1-octadecanol was restricted in the three-dimensional network formed by DMDBS and the honeycomb network formed by EG. X-ray diffraction(XRD) and Fourier transform infrared spectroscopy(FT-IR) results showed that no chemical reaction occurred among the components of composite PCM in the preparation process. The gel-to-sol transition temperature of the composite PCMs containing DMDBS was much higher than the melting point of pure 1-octadecanol. The improvements in preventing leakage and thermal stability limits were mainly attributed to the synergistic effect of the three-dimensional network formed by DMDBS and the honeycomb network formed by EG. Differential scanning calorimeter(DSC) was used to determine the latent heat and phase change temperature of the composite PCMs. During melting and freezing process the latent heat values of the PCM with the composition of 91% OD/3% DMDBS/6% EG were 214.9 and 185.9 kJ·kg-1, respectively. Its degree of supercooling was only 0.1 ℃. Thermal constant analyzer results showed that its thermal conductivity(κ) changed up to roughly 10 times over that of OD/DMDBS matrix.
文摘The cathode material La1-xSrxCuO3-δ(x=0.15, 0.2, 0.3, 0.4) was synthesized by a sol-gel method. X-ray diffraction reveals that a single phase of perovskite is formed. The investigation of the electrical properties suggests that La0.7Sr0.3CuO3-δ has the highest electrical conductivity. La0.7Sr0.3CuO3-δ powder was mixed with different amount SDC (Sm0.15Ce0.85O1.925) powder (5wt.%-30wt.%) as composite cathodes. Electrochemical properties of the composite cathodes were researched further. Investigation suggests that the addition of appropriate amount SDC to La0.7Sr0.3CuO3-δ can improve the electrochemical properties and obtain better cathodic performance. Using La0.7Sr0.3CuO3-δ-SDC composite materials as a cathode based on SDC electrolyte, higher current density and power density at intermediate temperatures can be obtained.
基金Supported by the National Science and Technology Major Project under Grant No 2013ZX02308-002the National Natural Science Foundation of China under Grant Nos 11435010,61474086 and 61334002
文摘CaN-based heterostructures with an InAlCaN/AlCaN composite barrier on sapphire (0001) substrates are grown by a low-pressure metal organic chemical vapor deposition system. Compositions of the InAiGaN layer are determined by x-ray photoelectron spectroscopy, structure and crystal quality of the heterostruetures are identified by high resolution x-ray diffraction, surface morphology of the samples are examined by an atomic force microscope, and Hall effect and capacitance-voltage measurements are performed at room temperature to evaluate the electrical properties of heterostructures. The Al/In ratio of the InAlGaN layer is 4.43, which indicates that the InAlCaN quaternary layer is nearly lattice-matched to the CaN channel. Capacitance-voltage results show that there is no parasitic channel formed between the InAIGaN layer and the AlCaN layer. Compared with the InAl- CaN/CaN heterostructure, the electrical properties of the InAlCaN/AlGaN/GaN heterostructure are improved obviously. Influences of the thickness of the AlGaN layer on the electrical properties of the heterostructures are studied. With the optimal thickness of the AlGaN layer to be 5 nm, the 2DEG mobility, sheet density and the sheet resistance of the sample is 1889.61 cm2/V.s, 1.44 × 10^13 cm-2 and as low as 201.1 Ω/sq, respectively.
基金This research was supported by the Science Foundation of China University of Petroleum-Beijing(No.2462023QNXZ002)the National Key R&D Program of China(2021YFA1501201)+2 种基金the National Natural Science Foundation of China(No.22278174)Independent research project of State Key Laboratory of heavy oil(2021–01)Shandong Excellent Young Scientists Fund Program(Overseas,2022HWYQ-082).
文摘A novel composite material(TD)composed of TS-1 microcrystalline and dendritic mesoporous silica nanospheres(DMSNs)was successfully prepared.The TD composite material had open pore structure and large specific surface area,which was conducive to the mass transfer of reactants and products.The Ti element in TS-1 could be used as an electron assistant,and the spillover d-electrons were conducive to the improvement of the sulfidation and dispersion of MoS_(2),thereby forming more type II MoS_(2) active phases.The incorporation of Ti could bring more Brønsted(B)and Lewis(L)acid,which was conducive to the hydrogenation pathway(HYD)selectivity(41.2%)of dibenzothiophene(DBT)hydrodesulfurization(HDS)and isomerization(ISO)route selectivity(21.9%)of 4,6-dimethyldibenzothiophene(4,6-DMDBT)HDS,thus improve the HDS activity of DBT and 4,6-DMDBT.NiMo/TD-70(Aging temperature=70℃)had the best HDS activities of DBT(99.0%)and 4,6-DMDBT(93.7%)due to its large open pore structure,good acidity,suitable metal-support interaction(MSI)and perfect dispersion of the metallic active sites.
文摘Environmental safety issues involved in transgenic plants have become the concern of researchers, practitioners and policy makers in recent years. Potential differences between Bt maize(ND1324 and ND2353 expressing the insecticidal Cry1Ab protein) and near-isogenic non-Bt varieties(ND1392 and ND223) in their influence on the composite microbial system of MC1 during the fermentation process were studied during 2011-2012. Cry1Ab protein in Bt maize residues didn't affect characteristics of lignocellulose degradation by MC1, pH of fermentation broth decreasing at initial stage and increasing at later stage of degradation. The quality of various volatile products in fermentation broth showed that no signifi cant difference of residues fermentation existed between Bt maize and non-Bt maize. During the fermentation MC1 efficiently degraded maize residues by 83%-88%, and cellulose, hemicelluloses and lignin content decreased by 70%-72%, 72%-75% and 30%-37%, respectively. Besides that, no consistent difference was found between Bt and non-Bt maize residues lignocellulose degradation by MC1 during the fermentation process. MC1 degraded 88%-89% Cry1Ab protein in Bt maize residues, and in the fermentation broth of MC1 and bacteria of MC1 Cry1Ab protein was not detected. DGGE profi le analyses revealed that the microbial community drastically changed during 1-3 days and became stable until the 9th day. Though the dominant strains at different fermentation stages had signifi cantly changed, no difference on the dominant strains was observed between Bt and non-Bt maize at different stages. Our study indicated that Cry1Ab protein did not infl uence the growth characteristic of MC1.
基金Funded by the National Natural Science Foundation of China(Nos.51202056,51372068)Hebei Natural Science Funds for Distinguished Young Scholar(No.B2014209304)+1 种基金Hebei Provincial Foundation for International Cooperation(No.15391403D)Hebei Natural Science Funds for the Joint Research of Iron and Steel(No.B2014209314)
文摘A series of Cd1-xZnxS/K2La2Ti3O10 composites were synthesized via a simple co-precipitation method. The prepared samples were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), X-ray energy dispersive spectroscopy(EDX), ultraviolet-visible diffuse reflection(UV-Vis), X-ray photoelectron spectroscopy(XPS) and photoluminescence(PL) measurements. The composite structures consisted of Cd1-xZnxS nanoparticles evenly distributed on the surface of K2La2Ti3O10. The absorption edge of K2La2Ti3O10 shifted to the visible light region upon introduction of the Cd1-xZnxS nanoparticles. The photocatalytic activities of the catalysts were evaluated by hydrogen production under visible light irradiation. The prepared Cd0.8Zn0.2S(30wt%)/K2La2Ti3O10 exhibited higher photocatalytic activity, evolving 6.92 mmol/g H2 under visible light irradiation for 3 h. The promoted photocatalytic activity of the composites was attributed to the synergistic effect between Cd1-xZnxS and K2La2Ti3O10, which resulted in enhanced separation of photogenerated electrons and holes.
文摘In the present work, we investigate the structural and optical properties of Znx-1MgxO composites prepared by the standard sintering method at 1200?C during 24 hours and doped with different percentages of magnesium x between 0% and 40%. For this purpose, we have used the X-ray diffraction (XRD) and the atomic force microscopy (AFM) to study the effect of the magnesium’s proportion on the crystalline and morphology proprieties of the obtained samples. XRD analysis showed that all films are polycrystalline with a hexagonal wurtzite structure, with an orientation of the grains according to directions (0002) and (10-10). The AFM characterisation show that the degree of surface roughness (RMS) increases with the increasing of MgO content. Optical properties of the ceramics were investigated by Absorbance and Reflectance measurements at room temperature in the wavelength range 200 - 2400 nm. Optical band gap energies (Eg) were determined. Further cathodoluminescence and dielectric measurements would be carried out to study the influence of MgO doping on the dielectric and luminescent properties of the ZnMgO ceramics.
文摘Capital market is one of the drivers of the economy through the formation of capital investor excess as well as an indicator of a country's economy. Movement of stock price index is often influenced by many factors, derived from the company's performance, monetary factor, and changes in world oil prices. This study highlights the problem in world oil prices due to political turmoil in the Middle East. The samples are taken from the Jakarta Composite Stock Price Index (JCI), oil prices, Indonesian inflation rate, Certificate of Bank Indonesia's (CBI) rate, and the reserve assets, during the period from January 2005 to December 2011 (84 months). Using the data published by the Bank of Indonesia, reports of the Central Bureau of Statistics (Biro Pusat Statistik, BPS), and other relevant sources, the data analyzed through the Eviews 7.1. The main objective of this study is to examine the effect of oil prices, foreign stock price index, and monetary variables (inflation rate, CBI rate, country's foreign reserves, and others) toward the JCI analyzed through the error correction model (ECM). Hypothesis testing with the F-test for the 95% confidence level indicates that the oil price, exchange rate (Indonesian Rupiah (IDR)/United States Dollar (USD)), CBI rate, foreign exchange reserves, the Dow Jones Index, and the Taiwan stock index, both simultaneously as well as partially have a significant influence on the JCI.