期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Case study of a driven pile foundation in diatomaceous soil.I:Site characterization and engineering properties 被引量:1
1
作者 Jiayao Wang Ehsan Yazdani T.Matthew Evans 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第2期431-445,共15页
Diatomaceous soils are comprised of the silica frustules of diatom microalgae that are present in marine and lacustrine environments throughout the world.Owing to their unique origin,diatomaceous soils are typically c... Diatomaceous soils are comprised of the silica frustules of diatom microalgae that are present in marine and lacustrine environments throughout the world.Owing to their unique origin,diatomaceous soils are typically characterized by high intraparticle porosity,complex particle shapes,and uniform mineralogy,causing them to exhibit atypical physical and engineering behaviors.A substantial deposit of diatomaceous silt was observed during site exploration for construction of the Buck Creek Bridge on OR140 near Klamath Falls,OR,USA.A comprehensive laboratory and in situ testing program indicated that the diatomaceous soil possessed“non-textbook”engineering properties.Specifically,tested samples had high liquid limits(≈100%-140%)with natural water contents at or near the liquid limit.Geologically,the soil is expected to be normally consolidated,yet high apparent overconsolidation ratios(OCR)(≈15-40)were observed both in oedometric consolidation tests and through cone penetration test(CPT)correlations.Standard penetration test(SPT)results show a corrected standard penetration resistance consistent with a medium-dense sand(i.e.(N1)_(60)≈25).CPT results include corrected tip resistances(qt)of approximately 7-10 MPa and excess pore pressures(u_(2))of up to 4 MPa.In CPT dissipation tests,pore water pressures(PWPs)returned to hydrostatic pressure in less than 1 h.In this work,we synthesize these seemingly disparate material properties in an attempt to infer appropriate engineering properties for the diatomaceous deposit at the Buck Creek Bridge and attempt to provide insight into the underlying reasons for the observed behavior. 展开更多
关键词 Diatomaceous soil Problematic soil site characterization Laboratory testing
下载PDF
Spectroscopy framework and review of characterization of energy resource sites
2
作者 C.Tohm T.Bheemasetti P.Diwakar 《Energy Geoscience》 2022年第2期147-159,共13页
Site characterization and rapid reliable identification of energy resources play a key role for future efficient energy production.Over the last several decades,many laboratory and in-situ techniques were developed to... Site characterization and rapid reliable identification of energy resources play a key role for future efficient energy production.Over the last several decades,many laboratory and in-situ techniques were developed to qualitatively and quantitatively characterize the sites and minerals.Despite the advancements,there are still many challenges associated with exploration,rapid detection,and spatial interpolation of the energy resources within a site.Spectroscopy techniques offer solutions to the current ongoing efforts on site characterization,exploration and collection of resources,quality control monitoring during production,and reclamation of the production sites due to environmental contamination.Spectral analysis has shown great promise in providing in-situ measurements that are comparable to arduous laboratory physio-chemical analysis.Spectroscopy is a fairly new technology in some sectors and has seen limited use but has shown great potential in exceeding the minimum standards implemented.This paper presents review of the current spectroscopy techniques that have been used in the agriculture,landfill,nuclear power,mining,and ground contamination industries with respect to the production of energy.A general overview of how spectral analysis techniques are being used to benefit each of these sectors along with some of the drawbacks associated with each is presented.Three frameworks including basic process,operation flowchart,minimum number of tests to be performed,and information on spatial interpolation analysis are presented.These frameworks along with the basic processes can be implemented for characterization of energy resource sites。 展开更多
关键词 SPECTROSCOPY Energy resources Spectral analysis In-situ testing site characterization
下载PDF
CHARACTERIZATION OF COBALT SITES IN REDUCED Co-Mo/Al_2O_3 AND Ru-Co-Mo/Al_2O_3 CATALYSTS
3
作者 Fend Shou XIAO (Department of Chemistry,Jilin University,Changchun 130023)Qin XIN Xie Xian GUO (National Laboratory for Catalysis,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023) 《Chinese Chemical Letters》 SCIE CAS CSCD 1991年第7期581-582,共2页
The two Co sites are well characterized in reduced Co-Mo/Al_2O_3 and Ru-Co- Mo/Al_2O_3 by new bands at 1895 and 1880 cm^(-1)in the IR spectra due to NO adsorption.
关键词 Mo Co CO characterization OF COBALT siteS IN REDUCED Co-Mo/Al2O3 AND Ru-Co-Mo/Al2O3 CATALYSTS AL RU
下载PDF
Spectroscopic Characterization of Staphylococcal Nuclease Mutants with Tryptophan at Internal Sites
4
作者 高光宇 李渝 +3 位作者 王伟 仲冬平 王树峰 龚旗煌 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第4期151-155,共5页
Tryptophan (Trp) is an intrinsic fluorescent probe for detecting the site-specified dynamics inside/outside protein. It is found that the Trp can easily be inserted in desired sites of protein, which affects the int... Tryptophan (Trp) is an intrinsic fluorescent probe for detecting the site-specified dynamics inside/outside protein. It is found that the Trp can easily be inserted in desired sites of protein, which affects the integrity of the overall structure. To evaluate this effect, we design thirteen double point mutants of staphylococcal nuclease, each of which has a single Trp residue planted at an internal site. The studies on Trp fluorescence, ANS-binding fluorescence, far- and near-UV CD spectra, and enzymatic activity are carried out. It is found that the mutation at the hydrophobic core of protein generates molten globular state conformation, which is a loose structure compared to their original compactness in wild type (WT). Its enzyme activity and surface hydrophobicity are also affected. The studies show that by proper site designing and external binding, Trp mutagenesis is a suitable method for carrying out the study on site specified dynamics of proteins. 展开更多
关键词 WT Spectroscopic characterization of Staphylococcal Nuclease Mutants with Tryptophan at Internal sites ANS
下载PDF
Methodology for Obtaining Optimal Sleeve Friction and Friction Ratio Estimates from CPT Data
5
作者 Erick Baziw 《International Journal of Geosciences》 CAS 2023年第3期290-303,共14页
Cone penetration testing (CPT) is a cost effective and popular tool for geotechnical site characterization. CPT consists of pushing at a constant rate an electronic penetrometer into penetrable soils and recording con... Cone penetration testing (CPT) is a cost effective and popular tool for geotechnical site characterization. CPT consists of pushing at a constant rate an electronic penetrometer into penetrable soils and recording cone bearing (q<sub>c</sub>), sleeve friction (f<sub>c</sub>) and dynamic pore pressure (u) with depth. The measured q<sub>c</sub>, f<sub>s</sub> and u values are utilized to estimate soil type and associated soil properties. A popular method to estimate soil type from CPT measurements is the Soil Behavior Type (SBT) chart. The SBT plots cone resistance vs friction ratio, R<sub>f</sub> [where: R<sub>f</sub> = (f<sub>s</sub>/q<sub>c</sub>)100%]. There are distortions in the CPT measurements which can result in erroneous SBT plots. Cone bearing measurements at a specific depth are blurred or averaged due to q<sub>c</sub> values being strongly influenced by soils within 10 to 30 cone diameters from the cone tip. The q<sub>c</sub>HMM algorithm was developed to address the q<sub>c</sub> blurring/averaging limitation. This paper describes the distortions which occur when obtaining sleeve friction measurements which can in association with q<sub>c</sub> blurring result in significant errors in the calculated R<sub>f</sub> values. This paper outlines a novel and highly effective algorithm for obtaining accurate sleeve friction and friction ratio estimates. The f<sub>c</sub> optimal filter estimation technique is referred to as the OSFE-IFM algorithm. The mathematical details of the OSFE-IFM algorithm are outlined in this paper along with the results from a challenging test bed simulation. The test bed simulation demonstrates that the OSFE-IFM algorithm derives accurate estimates of sleeve friction from measured values. Optimal estimates of cone bearing and sleeve friction result in accurate R<sub>f</sub> values and subsequent accurate estimates of soil behavior type. 展开更多
关键词 Cone Penetration Testing (CPT) Optimal Estimation Geotechnical site characterization Sleeve Friction Cone Bearing Friction Ratio Iterative Forward Modelling (IFM) Soil Behavior Type (SBT)
下载PDF
Technique for Estimating the Cone Bearing Smoothing Parameters
6
作者 Erick Baziw 《International Journal of Geosciences》 2023年第7期603-618,共16页
Cone penetration testing (CPT) is an extensively utilized and cost effective tool for geotechnical site characterization. CPT consists of pushing at a constant rate an electronic cone into penetrable soils and recordi... Cone penetration testing (CPT) is an extensively utilized and cost effective tool for geotechnical site characterization. CPT consists of pushing at a constant rate an electronic cone into penetrable soils and recording the resistance to the cone tip (q<sub>c</sub> value). The measured q<sub>c</sub> values (after correction for the pore water pressure) are utilized to estimate soil type and associated soil properties based predominantly on empirical correlations. The most common cone tips have associated areas of 10 cm<sup>2</sup> and 15 cm<sup>2</sup>. Investigators also utilized significantly larger cone tips (33 cm<sup>2</sup> and 40 cm<sup>2</sup>) so that gravelly soils can be penetrated. Small cone tips (2 cm<sup>2</sup> and 5 cm<sup>2</sup>) are utilized for shallow soil investigations. The cone tip resistance measured at a particular depth is affected by the values above and below the depth of interest which results in a smoothing or blurring of the true bearing values. Extensive work has been carried out in mathematically modelling the smoothing function which results in the blurred cone bearing measurements. This paper outlines a technique which facilitates estimating the dominant parameters of the cone smoothing function from processing real cone bearing data sets. This cone calibration technique is referred to as the so-called CPSPE algorithm. The mathematical details of the CPSPE algorithm are outlined in this paper along with the results from a challenging test bed simulation. 展开更多
关键词 Cone Penetration Testing (CPT) Geotechnical site characterization Optimal Estimation Iterative Forward Modelling (IFM) Monte Carlo Techniques Calibration
下载PDF
Case study of a driven pile foundation in diatomaceous soil.II:Pile installation,dynamic analysis,and pore pressure generation 被引量:2
7
作者 Ehsan Yazdani Jiayao Wang T.Matthew Evans 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第2期446-456,共11页
This paper presents the results from a case study highlighting the difficulties of pile driving in diatomaceous soils.In the companion(first)paper to this article,results of an extensive laboratory and in situ testing... This paper presents the results from a case study highlighting the difficulties of pile driving in diatomaceous soils.In the companion(first)paper to this article,results of an extensive laboratory and in situ testing program were presented while the results from pile driving and further analysis of field observations were presented herein.Unexpected high pile rebound(HPR)was observed during driving of a closed-end pipe pile,with refusal occurring at a depth of less than 5 m.Subsequent open-ended piles were thus driven.Piezometer and case pile wave analysis program(CAPWAP)data were collected during driving of both closed-and open-end piles.Piezometer data indicated that negative pore water pressures(PWPs)were generated while the closed-ended pile exhibited high rebound.Results from in situ tests indicated change in material stiffness and strong dilative tendencies near the depth of refusal.A hypothesis for observed behavior was proposed that considers the soil beneath the pile as a medium with an effectively infinite bulk modulus. 展开更多
关键词 Diatomaceous soil Problematic soil site characterization Laboratory testing
下载PDF
Adaptive sampling strategy for characterizing spatial distribution of soil liquefaction potential using cone penetration test 被引量:1
8
作者 Zheng Guan Yu Wang Tengyuan Zhao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第4期1221-1231,共11页
Characterizing spatial distribution of soil liquefaction potential is critical for assessing liquefactionrelated hazards(e.g.building damages caused by liquefaction-induced differential settlement).However,in engineer... Characterizing spatial distribution of soil liquefaction potential is critical for assessing liquefactionrelated hazards(e.g.building damages caused by liquefaction-induced differential settlement).However,in engineering practice,soil liquefaction potential is usually measured at limited locations in a specific site using in situ tests,e.g.cone penetration tests(CPTs),due to the restrictions of time,cost and access to subsurface space.In these cases,liquefaction potential of soil at untested locations requires to be interpreted from limited measured data points using proper interpolation method,leading to remarkable statistical uncertainty in liquefaction assessment.This underlines an important question of how to optimize the locations of CPT soundings and determine the minimum number of CPTs for achieving a target reliability level of liquefaction assessment.To tackle this issue,this study proposes a smart sampling strategy for determining the minimum number of CPTs and their optimal locations in a selfadaptive and data-driven manner.The proposed sampling strategy leverages on information entropy and Bayesian compressive sampling(BCS).Both simulated and real CPT data are used to demonstrate the proposed method.Illustrative examples indicate that the proposed method can adaptively and sequentially select the required number and optimal locations of CPTs. 展开更多
关键词 Liquefaction potential Information entropy Cone penetration test(CPT) site characterization Compressive sampling
下载PDF
Cone Bearing Estimation Utilizing a Hybrid HMM and IFM Smoother Filter Formulation
9
作者 Erick Baziw Gerald Verbeek 《International Journal of Geosciences》 2021年第11期1040-1054,共15页
Cone penetration testing (CPT) is a widely used geotechnical engineering </span><i><span style="font-family:Verdana;">in-situ</span></i><span style="font-family:Verdana;... Cone penetration testing (CPT) is a widely used geotechnical engineering </span><i><span style="font-family:Verdana;">in-situ</span></i><span style="font-family:Verdana;"> test for mapping soil profiles and assessing soil properties. In CPT, a cone on the end of a series of rods is pushed into the ground at a constant rate and resistance to the cone tip is measured (</span><i><span style="font-family:Verdana;">q</span><sub><span style="font-family:Verdana;">m</span></sub></i><span style="font-family:Verdana;">). The </span><i><span style="font-family:Verdana;">q</span><sub><span style="font-family:Verdana;">m</span></sub></i><span style="font-family:Verdana;"> values are utilized to characterize the soil profile. Unfortunately, the measured cone tip resistance </span></span><span style="font-family:Verdana;">is</span><span style="font-family:""><span style="font-family:Verdana;"> blurred and/or averaged which can result in the distortion of the soil profile characterization and the inability to identify thin layers. This paper outlines a novel and highly effective algorithm for obtaining cone bearing estimates </span><i><span style="font-family:Verdana;">q</span><sub><span style="font-family:Verdana;">t</span></sub></i><span style="font-family:Verdana;"> from averaged or smoothed </span><i><span style="font-family:Verdana;">q</span><sub><span style="font-family:Verdana;">m</span></sub></i><span style="font-family:Verdana;"> measurements. This </span><i><span style="font-family:Verdana;">q</span><sub><span style="font-family:Verdana;">t</span></sub></i><span style="font-family:Verdana;"> optimal filter estimation technique is referred to as the </span><i><span style="font-family:Verdana;">q</span><sub><span style="font-family:Verdana;">t</span></sub><span style="font-family:Verdana;">HMM-IFM</span></i><span style="font-family:Verdana;"> algorithm and it implements a hybrid hidden Markov model and iterative forward modelling technique. The mathematical details of the </span><i><span style="font-family:Verdana;">q</span><sub><span style="font-family:Verdana;">t</span></sub><span style="font-family:Verdana;">HMM-IFM</span></i><span style="font-family:Verdana;"> algorithm are outline</span><span style="font-family:Verdana;">d in this paper along with the results from challenging test</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">bed. The test</span><span style="font-family:""> </span><span style="font-family:Verdana;">b</span><span style="font-family:""><span style="font-family:Verdana;">ed simulations have demonstrated that the </span><i><span style="font-family:Verdana;">q</span><sub><span style="font-family:Verdana;">t</span></sub><span style="font-family:Verdana;">HMM-IFM</span></i><span style="font-family:Verdana;"> algorithm can derive accurate </span><i><span style="font-family:Verdana;">q</span><sub><span style="font-family:Verdana;">t</span></sub></i><span style="font-family:Verdana;"> values from challenging averaged </span><i><span style="font-family:Verdana;">q</span><sub><span style="font-family:Verdana;">m</span></sub></i><span style="font-family:Verdana;"> profiles. This allows for greater soil resolution and the identification and quantification of thin layers in a soil profile. 展开更多
关键词 Bayesian Recursive Estimation (BRE) Cone Penetration Testing (CPT) Geotechnical site characterization Hidden Markov Model (HMM) Iterative Forward Modelling (IFM) SMOOTHING
下载PDF
Disposal of high-level radioactive waste in crystalline rock: On coupled processes and site development
10
作者 Liangchao Zou Vladimir Cvetkovic 《Rock Mechanics Bulletin》 2023年第3期44-56,共13页
Safe disposal of high-level radioactive nuclear waste(HLW)is crucial for human health and the environment,as well as for sustainable development.Deep geological disposal in sparsely fractured crystalline rock is consi... Safe disposal of high-level radioactive nuclear waste(HLW)is crucial for human health and the environment,as well as for sustainable development.Deep geological disposal in sparsely fractured crystalline rock is considered one of the most favorable methods for final disposal of HLW.Extensive research has been conducted worldwide and many countries have initiated their own national development programs for deep geological disposal.Significant advancements of national programs for deep geological disposal of HLW in crystalline rock have been achieved in Sweden and Finland,which are currently under site development stage,focusing on detailed site characterization,repository construction,and post-closure safety analysis.Continued research and development remain important in the site development stage to ensure long-term safety of the HLW disposal repository.This work presents an overview and discussion of the progress as well as remaining open scientific issues and possibilities related to site development for safe disposal of HLW in crystalline rock.We emphasize that developing a comprehensive and convergent understanding of the coupled thermal,hydraulic,mechanical,chemical and biological(THMCB)processes in fractured crystalline rock remains the most important yet challenging topic for future studies towards safe disposal of HLW in crystalline rock.Advancements in laboratory facilities/techniques and computational models,as well as available comprehensive field data from site developments,provide new opportunities to enhance our understanding of the coupled processes and thereby repository design for safe geological disposal of HLW in crystalline rock. 展开更多
关键词 High-level radioactive waste disposal Fractured crystalline rock Safety assessment site characterization site construction Post-closure safety
原文传递
Unpacking data-centric geotechnics
11
作者 Kok-Kwang Phoon Jianye Ching Zijun Cao 《Underground Space》 SCIE EI 2022年第6期967-989,共23页
The purpose of this paper(presented online as a keynote lecture at the 25th Annual Indonesian Geotechnical Conference on 10 Nov 2021)is to broadly conceptualize the agenda for data-centric geotechnics,an emerging fiel... The purpose of this paper(presented online as a keynote lecture at the 25th Annual Indonesian Geotechnical Conference on 10 Nov 2021)is to broadly conceptualize the agenda for data-centric geotechnics,an emerging field that attempts to prepare geotechnical engineering for digital transformation.The agenda must include(1)development of methods that make sense of all real-world data(not selective input data for a physical model),(2)offering insights of significant value to critical real-world decisions for current or future practice(not decisions for an ideal world or decisions of minor concern to geotechnical engineers),and(3)sensitivity to the physical context of geotechnics(not abstract data-driven analysis connected to geotechnics in a peripheral way,i.e.,engagement with the knowledge and experience base should be substantial).These three elements are termed“data centricity”,“fit for(and transform)practice”,and“geotechnical context”in the agenda.Given that a knowledge of the site is central to any geotechnical engineering project,datadriven site characterization(DDSC)must constitute one key application domain in data-centric geotechnics,although other infrastructure lifecycle phases such as project conceptualization,design,construction,operation,and decommission/reuse would benefit from data-informed decision support as well.One part of DDSC that addresses numerical soil data in a site investigation report and soil property databases is pursued under Project DeepGeo.In principle,the source of data can also go beyond site investigation,and the type of data can go beyond numbers,such as categorical data,text,audios,images,videos,and expert opinion.The purpose of Project DeepGeo is to produce a 3D stratigraphic map of the subsurface volume below a full-scale project site and to estimate relevant engineering properties at each spatial point based on actual site investigation data and other relevant Big Indirect Data(BID).Uncertainty quantification is necessary,as current real-world data is insufficient,incomplete,and/or not directly relevant to construct a deterministic map.The value of a deterministic map for decision support is debatable.The computational cost to do this for a 3D true scale subsurface volume must be reasonable.Ultimately,geotechnical structures need to be a part of a completely smart infrastructure that fits the circular economy and need to focus on delivering service to end-users and the community from project conceptualization to decommission/reuse with full integration to smart city and smart society.Although current geotechnical practice has been very successful in taking“calculated risk”informed by limited data,imperfect theories,prototype testing,observations,among others and exercising judicious caution and engineering judgment,there is no clear pathway forward to leverage on big data and digital technologies such as machine learning,BIM,and digital twin to meet more challenging needs such as sustainability and resilience engineering. 展开更多
关键词 Data-centric geotechnics Bayesian machine learning Data-driven site characterization(DDSC) Project DeepGeo Data-informed decision support index
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部