期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of site preparation methods on soil physical properties and outplanting success of coniferous seedlings in boreal forests
1
作者 Aleksey S.Ilintsev Elena N.Nakvasina Alexander P.Bogdanov 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期70-80,共11页
This study assessed the effect of patch scarification and mounding on the physical properties of the root layer and the success of tree planting in various types of forests.This study was conducted on 12 forest sites ... This study assessed the effect of patch scarification and mounding on the physical properties of the root layer and the success of tree planting in various types of forests.This study was conducted on 12 forest sites in taiga forests of the European part of Russia.A total of 54 plots were set up to assess seedling survival;root collar diameter,height,and heigh increment were measured for 240 seedlings to assess growth.In the rooting layer,240 soil samples were taken to determine physical properties.The study showed that soil treatment methods had no effect on bulk density and total porosity in Cladina sites.However,reduced soil moisture was noted,particularly in mounds,resulting in increased aeration.In Myrtillus sites,there were increased bulk density,reduced soil moisture,and total porosity in the mounds.Mounding treatment in Polytrichum sites resulted in reduced soil moisture and increased aeration porosity.In the Myrtillus and Polytrichum sites,patch scarification had no effects on physical properties.In Polytrichum sites,survival rates,heights,and heigh increments of bareroot Norway spruce seedlings in mounds were higher than in patches;however,the same did not apply to diameter.In Cladina and Myrtillus sites,there was no difference in growth for bareroot and containerised seedlings with different soil treatments.Growing conditions and soil types should be considered when applying different soil treatment methods to ensure high survival rates and successful seedling growth. 展开更多
关键词 Boreal forests Mechanical site preparation Patch scarification MOUNDING Soil properties Containerised seedlings Bareroot seedlings
下载PDF
A Case Study on Soil Improvement with Rapid Impact Compaction (RIC)
2
作者 Emmanouil Spyropoulos Bassim A. Nawaz Saleh A. Wohaibi 《World Journal of Engineering and Technology》 2020年第4期565-589,共25页
Soil treatment was utilized on numerous production sites to compact cohesion less formations, having the objective to increase earth characteristics and decrease probable subsidence. Within the last few years, Rapid I... Soil treatment was utilized on numerous production sites to compact cohesion less formations, having the objective to increase earth characteristics and decrease probable subsidence. Within the last few years, Rapid Impact Compaction (RIC) has increased its attractiveness as a soil treatment method.</span><span style="font-size:10pt;font-family:""> </span><span style="font-family:Verdana;">RIC is an innovative dynamic compaction technique primarily used to compact sandy soils where silt and clay contents are low. This work presents a case study of ground improvement using RIC and its suitability for site preparation earthworks. The RIC technique has been performed in an early site preparation which consists of a cut and fill contract for a mega project in the Kingdom of Saudi Arabia. RIC is a process where loose subsurface soils are improved through compaction with the utilization of successive impact blows from the top surface. This project involves the compaction of the fill materials (with an average thickness of 4 m) and loose natural formations (averaging 4 m in depth). The objective of the soil treatment scheme is to increase the relative density of the soils (both fill and natural) to 85%. The usage of the RIC within the site preparation earthwork applications is possible provided the presence of certain elements—specifically, granular materials and particles finer than number 200 sieve—do not exceed 15%. The RIC method proved to be cost- and time-effective when utilized for filling compaction activities since it compacts considerable soil thicknesses with a single action from the top surface, and can be used as an alternative to the traditional method of compacting fill formations in pre-determined lift thicknesses. 展开更多
关键词 Rapid Impact Compaction RIC Fill Compaction Cut and Fill Relative Density COMPACTION Effective site preparation Cone Penetration Test (CPT)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部