In this paper,we establish quantitative Green’s function estimates for some higher-dimensional lattice quasi-periodic(QP)Schrodinger operators.The resonances in the estimates can be described via a pair of symmetric ...In this paper,we establish quantitative Green’s function estimates for some higher-dimensional lattice quasi-periodic(QP)Schrodinger operators.The resonances in the estimates can be described via a pair of symmetric zeros of certain functions,and the estimates apply to the sub-exponential-type non-resonance conditions.As the application of quantitative Green’s function estimates,we prove both the arithmetic version of Anderson localization and the finite volume version of(1/2-)-Holder continuity of the integrated density of states(IDS)for such QP Schrodinger operators.This gives an affirmative answer to Bourgain’s problem in Bourgain(2000).展开更多
For an elliptic problem with variable coefficients in three dimensions,this article discusses local pointwise convergence of the three-dimensional(3D)finite element.First,the Green's function and the derivative Gr...For an elliptic problem with variable coefficients in three dimensions,this article discusses local pointwise convergence of the three-dimensional(3D)finite element.First,the Green's function and the derivative Green's function are introduced.Secondly,some relationship of norms such as L^(2)-norms,W^(1,∞)-norms,and negative-norms in locally smooth subsets of the domainΩis derived.Finally,local pointwise convergence properties of the finite element approximation are obtained.展开更多
基金supported by National Natural Science Foundation of China(Grant No.12271380)supported by National Natural Science Foundation of China(Grant Nos.12171010 and 12288101)National Key R&D Program(Grant No.2021YFA1001600)。
文摘In this paper,we establish quantitative Green’s function estimates for some higher-dimensional lattice quasi-periodic(QP)Schrodinger operators.The resonances in the estimates can be described via a pair of symmetric zeros of certain functions,and the estimates apply to the sub-exponential-type non-resonance conditions.As the application of quantitative Green’s function estimates,we prove both the arithmetic version of Anderson localization and the finite volume version of(1/2-)-Holder continuity of the integrated density of states(IDS)for such QP Schrodinger operators.This gives an affirmative answer to Bourgain’s problem in Bourgain(2000).
基金Supported by Special Projects in Key Fields of Colleges and Universities in Guangdong Province(2022ZDZX3016)Projects of Talents Recruitment of GDUPT.
文摘For an elliptic problem with variable coefficients in three dimensions,this article discusses local pointwise convergence of the three-dimensional(3D)finite element.First,the Green's function and the derivative Green's function are introduced.Secondly,some relationship of norms such as L^(2)-norms,W^(1,∞)-norms,and negative-norms in locally smooth subsets of the domainΩis derived.Finally,local pointwise convergence properties of the finite element approximation are obtained.