The authors propose a two-stage method for recognizing driving situations on the basis of driving signals for application to a safe human interface of an in-vehicle information system. In first stage, an unknown drivi...The authors propose a two-stage method for recognizing driving situations on the basis of driving signals for application to a safe human interface of an in-vehicle information system. In first stage, an unknown driving situation is determined as stopping behavior or non-stopping behavior. In second stage, a Hidden Markov Model (HMM)-based pattern recognition method is used to model and recognize six non-stopping driving situations. The authors attempt to find the optimal HMM configuration to improve the performance of driving situation recognition. Center for Integrated Acoustic Information Research (CLAIR) in-vehicle corpus is used to evaluate the HMM-based recognition method. Driving situation categories are recognized using five driving signals. The proposed method achieves a relative error reduction rate of 30.9% compared to a conventional one-stage based HMMs.展开更多
Emotion recognition based on facial expressions is one of the most critical elements of human-machine interfaces.Most conventional methods for emotion recognition using facial expressions use the entire facial image t...Emotion recognition based on facial expressions is one of the most critical elements of human-machine interfaces.Most conventional methods for emotion recognition using facial expressions use the entire facial image to extract features and then recognize specific emotions through a pre-trained model.In contrast,this paper proposes a novel feature vector extraction method using the Euclidean distance between the landmarks changing their positions according to facial expressions,especially around the eyes,eyebrows,nose,andmouth.Then,we apply a newclassifier using an ensemble network to increase emotion recognition accuracy.The emotion recognition performance was compared with the conventional algorithms using public databases.The results indicated that the proposed method achieved higher accuracy than the traditional based on facial expressions for emotion recognition.In particular,our experiments with the FER2013 database show that our proposed method is robust to lighting conditions and backgrounds,with an average of 25% higher performance than previous studies.Consequently,the proposed method is expected to recognize facial expressions,especially fear and anger,to help prevent severe accidents by detecting security-related or dangerous actions in advance.展开更多
Facing constraints imposed by storage and bandwidth limitations,the vast volume of phasor meas-urement unit(PMU)data collected by the wide-area measurement system(WAMS)for power systems cannot be fully utilized.This l...Facing constraints imposed by storage and bandwidth limitations,the vast volume of phasor meas-urement unit(PMU)data collected by the wide-area measurement system(WAMS)for power systems cannot be fully utilized.This limitation significantly hinders the effective deployment of situational awareness technologies for systematic applications.In this work,an effective curvature quantified Douglas-Peucker(CQDP)-based PMU data compression method is proposed for situational awareness of power systems.First,a curvature integrated distance(CID)for measuring the local flection and fluc-tuation of PMU signals is developed.The Doug-las-Peucker(DP)algorithm integrated with a quan-tile-based parameter adaptation scheme is then proposed to extract feature points for profiling the trends within the PMU signals.This allows adaptive adjustment of the al-gorithm parameters,so as to maintain the desired com-pression ratio and reconstruction accuracy as much as possible,irrespective of the power system dynamics.Fi-nally,case studies on the Western Electricity Coordinat-ing Council(WECC)179-bus system and the actual Guangdong power system are performed to verify the effectiveness of the proposed method.The simulation results show that the proposed method achieves stably higher compression ratio and reconstruction accuracy in both steady state and in transients of the power system,and alleviates the compression performance degradation problem faced by existing compression methods.Index Terms—Curvature quantified Douglas-Peucker,data compression,phasor measurement unit,power sys-tem situational awareness.展开更多
The battlefield environment is changing rapidly,and fast and accurate identification of the tactical intention of enemy targets is an important condition for gaining a decision-making advantage.The current Intention R...The battlefield environment is changing rapidly,and fast and accurate identification of the tactical intention of enemy targets is an important condition for gaining a decision-making advantage.The current Intention Recognition(IR)method for air targets has shortcomings in temporality,interpretability and back-and-forth dependency of intentions.To address these problems,this paper designs a novel air target intention recognition method named STABC-IR,which is based on Bidirectional Gated Recurrent Unit(Bi GRU)and Conditional Random Field(CRF)with Space-Time Attention mechanism(STA).First,the problem of intention recognition of air targets is described and analyzed in detail.Then,a temporal network based on Bi GRU is constructed to achieve the temporal requirement.Subsequently,STA is proposed to focus on the key parts of the features and timing information to meet certain interpretability requirements while strengthening the timing requirements.Finally,an intention transformation network based on CRF is proposed to solve the back-and-forth dependency and transformation problem by jointly modeling the tactical intention of the target at each moment.The experimental results show that the recognition accuracy of the jointly trained STABC-IR model can reach 95.7%,which is higher than other latest intention recognition methods.STABC-IR solves the problem of intention transformation for the first time and considers both temporality and interpretability,which is important for improving the tactical intention recognition capability and has reference value for the construction of command and control auxiliary decision-making system.展开更多
文摘The authors propose a two-stage method for recognizing driving situations on the basis of driving signals for application to a safe human interface of an in-vehicle information system. In first stage, an unknown driving situation is determined as stopping behavior or non-stopping behavior. In second stage, a Hidden Markov Model (HMM)-based pattern recognition method is used to model and recognize six non-stopping driving situations. The authors attempt to find the optimal HMM configuration to improve the performance of driving situation recognition. Center for Integrated Acoustic Information Research (CLAIR) in-vehicle corpus is used to evaluate the HMM-based recognition method. Driving situation categories are recognized using five driving signals. The proposed method achieves a relative error reduction rate of 30.9% compared to a conventional one-stage based HMMs.
基金supported by the Healthcare AI Convergence R&D Program through the National IT Industry Promotion Agency of Korea(NIPA)funded by the Ministry of Science and ICT(No.S0102-23-1007)the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2017R1A6A1A03015496).
文摘Emotion recognition based on facial expressions is one of the most critical elements of human-machine interfaces.Most conventional methods for emotion recognition using facial expressions use the entire facial image to extract features and then recognize specific emotions through a pre-trained model.In contrast,this paper proposes a novel feature vector extraction method using the Euclidean distance between the landmarks changing their positions according to facial expressions,especially around the eyes,eyebrows,nose,andmouth.Then,we apply a newclassifier using an ensemble network to increase emotion recognition accuracy.The emotion recognition performance was compared with the conventional algorithms using public databases.The results indicated that the proposed method achieved higher accuracy than the traditional based on facial expressions for emotion recognition.In particular,our experiments with the FER2013 database show that our proposed method is robust to lighting conditions and backgrounds,with an average of 25% higher performance than previous studies.Consequently,the proposed method is expected to recognize facial expressions,especially fear and anger,to help prevent severe accidents by detecting security-related or dangerous actions in advance.
基金supported by the National Natural Sci-ence Foundation of China(No.52077195).
文摘Facing constraints imposed by storage and bandwidth limitations,the vast volume of phasor meas-urement unit(PMU)data collected by the wide-area measurement system(WAMS)for power systems cannot be fully utilized.This limitation significantly hinders the effective deployment of situational awareness technologies for systematic applications.In this work,an effective curvature quantified Douglas-Peucker(CQDP)-based PMU data compression method is proposed for situational awareness of power systems.First,a curvature integrated distance(CID)for measuring the local flection and fluc-tuation of PMU signals is developed.The Doug-las-Peucker(DP)algorithm integrated with a quan-tile-based parameter adaptation scheme is then proposed to extract feature points for profiling the trends within the PMU signals.This allows adaptive adjustment of the al-gorithm parameters,so as to maintain the desired com-pression ratio and reconstruction accuracy as much as possible,irrespective of the power system dynamics.Fi-nally,case studies on the Western Electricity Coordinat-ing Council(WECC)179-bus system and the actual Guangdong power system are performed to verify the effectiveness of the proposed method.The simulation results show that the proposed method achieves stably higher compression ratio and reconstruction accuracy in both steady state and in transients of the power system,and alleviates the compression performance degradation problem faced by existing compression methods.Index Terms—Curvature quantified Douglas-Peucker,data compression,phasor measurement unit,power sys-tem situational awareness.
基金supported by the National Natural Science Foundation of China(Nos.62106283 and 72001214)。
文摘The battlefield environment is changing rapidly,and fast and accurate identification of the tactical intention of enemy targets is an important condition for gaining a decision-making advantage.The current Intention Recognition(IR)method for air targets has shortcomings in temporality,interpretability and back-and-forth dependency of intentions.To address these problems,this paper designs a novel air target intention recognition method named STABC-IR,which is based on Bidirectional Gated Recurrent Unit(Bi GRU)and Conditional Random Field(CRF)with Space-Time Attention mechanism(STA).First,the problem of intention recognition of air targets is described and analyzed in detail.Then,a temporal network based on Bi GRU is constructed to achieve the temporal requirement.Subsequently,STA is proposed to focus on the key parts of the features and timing information to meet certain interpretability requirements while strengthening the timing requirements.Finally,an intention transformation network based on CRF is proposed to solve the back-and-forth dependency and transformation problem by jointly modeling the tactical intention of the target at each moment.The experimental results show that the recognition accuracy of the jointly trained STABC-IR model can reach 95.7%,which is higher than other latest intention recognition methods.STABC-IR solves the problem of intention transformation for the first time and considers both temporality and interpretability,which is important for improving the tactical intention recognition capability and has reference value for the construction of command and control auxiliary decision-making system.