期刊文献+
共找到59,145篇文章
< 1 2 250 >
每页显示 20 50 100
Earthquake relocation using a 3D velocity model and implications on seismogenic faults in the Beijing-Tianjin-Hebei region
1
作者 Jinxin Hou Yunpeng Zhang +1 位作者 Liwei Wang Zhirong Zhao 《Earthquake Research Advances》 CSCD 2024年第2期55-64,共10页
To enhance the understanding of the geometry and characteristics of seismogenic faults in the Beijing-Tianjin-Hebei region,we relocated 14805 out of 16063 earthquakes(113°E-120°E,36°N-43°N)that occ... To enhance the understanding of the geometry and characteristics of seismogenic faults in the Beijing-Tianjin-Hebei region,we relocated 14805 out of 16063 earthquakes(113°E-120°E,36°N-43°N)that occurred between January 2008 and December 2020 using the double-difference tomography method.Based on the spatial variation in seismicity after relocation,the Beijing-Tianjin-Hebei region can be divided into three seismic zones:Xingtai-Wen'an,Zhangbei-Ninghexi,and Tangshan.(1)The Xingtai-Wen'an Seismic Zone has a northeastsouthwest strike.The depth profile of earthquakes perpendicular to the strike reveals three northeast-striking,southeast-dipping,high-angle deep faults(>10 km depth),including one below the shallow(<10 km depth)listric,northwest-dipping Xinghe fault in the Xingtai region.Two additional deep faults in the Wen'an region are suggested to be associated with the 2006 M 5.1 Wen'an Earthquake and the 1967 M 6.3 Dacheng earthquake;(2)The Zhangbei-Ninghexi Seismic Zone is oriented north-northwest.Multiple northeast-striking faults(10-20 km depth),inferred from the earthquake-intensive zones,exist beneath the shallow(<10 km depth)Xiandian Fault,Xiaotangshan Fault,Huailai-Zhuolu Basin North Fault,Yangyuan Basin Fault and Yanggao Basin North Fault;(3)In the Tangshan Seismic Zone,earthquakes are mainly concentrated near the northeast-striking Tangshan-Guye Fault,Lulong Fault,and northwest-striking Luanxian-Laoting Fault.An inferred north-south-oriented blind fault is present to the north of the Tangshan-Guye Fault.The 1976 M 7.8 Tangshan earthquake occurred at the junction of a shallow northwest-dipping fault and a deep southeast-dipping fault.This study emphasizes that earthquakes in the region are primarily associated with deep blind faults.Some deep blind faults have different geometries compared to shallow faults,suggesting a complex fault system in the region.Overall,this research provides valuable insights into the seismogenic faults in the Beijing–Tianjin–Hebei region.Further studies and monitoring of these faults are essential for earthquake mitigation efforts in this region. 展开更多
关键词 beIJING-TIanJIN-HEbeI Double difference tomography earthquake location Seismogenic faults
下载PDF
Rapid report of the December 18,2023 M_(S)6.2 Jishishan earthquake,Gansu,China
2
作者 Guangjie Han Danqing Dai +2 位作者 Yu Li Nan Xi Li Sun 《Earthquake Research Advances》 CSCD 2024年第2期14-21,共8页
On December 18,2023,the Jishishan area in Gansu Province was jolted by a M_(S) 6.2 earthquake,which is the most powerful seismic event that occurred throughout the year in China.The earthquake occurred along the NWtre... On December 18,2023,the Jishishan area in Gansu Province was jolted by a M_(S) 6.2 earthquake,which is the most powerful seismic event that occurred throughout the year in China.The earthquake occurred along the NWtrending Lajishan fault(LJSF),a large tectonic transformation zone.After this event,China Earthquake Networks Center(CENC)has timely published several reports about seismic sources for emergency responses.The earthquake early warning system issued the first alert 4.9 s after the earthquake occurrence,providing prompt notification that effectively mitigated panics,injuries,and deaths of residents.The near real-time focal mechanism solution indicates that this earthquake is associated with a thrust fault.The distribution of aftershocks,the rupture process,and the recorded amplitudes from seismic monitoring and GNSS stations,all suggest that the mainshock rupture predominately propagates to the northwest direction.The duration of the rupture process is~12 s,and the largest slip is located at approximately 6.3 km to the NNW from the epicenter,with a peak slip of 0.12 m at~8 km depth.Seismic station N0028 recorded the highest instrumental intensity,which is 9.4 on the Mercalli scale.The estimated intensity map shows a seismic intensity reaching up to IX near the rupture area,consistent with field survey results.The aftershocks(up to December 22,2023)are mostly distributed in the northwest direction within~20 km of the epicenter.This earthquake caused serious casualties and house collapses,which requires further investigations into the impact of this earthquake. 展开更多
关键词 earthquake early warning Focal mechanism Rupture process Real-time intensity Coseismic deformation
下载PDF
Deep tectonics and seismogenic mechanisms of the seismic source zone of the Jishishan M_(s)6.2 earthquake on December 18,2023,at the northeast margin of the Tibetan Plateau
3
作者 Qiong Wang ShuYu Li +3 位作者 XinYi Li Yue Wu PanPan Zhao Yuan Gao 《Earth and Planetary Physics》 EI CAS CSCD 2024年第3期514-521,共8页
On December 18,2023,an M_(s)6.2 earthquake occurred in Jishishan,Gansu Province,China.This earthquake happened in the eastern region of the Qilian Orogenic Belt,which is situated at the forefront of the NE margin of t... On December 18,2023,an M_(s)6.2 earthquake occurred in Jishishan,Gansu Province,China.This earthquake happened in the eastern region of the Qilian Orogenic Belt,which is situated at the forefront of the NE margin of the Tibetan Plateau(i.e.,Qinghai-Tibet Plateau),encompassing a rhombic-shaped area that intersects the Qilian-Qaidam Basin,Alxa Block,Ordos Block,and South China Block.In this study,we analyzed the deep tectonic pattern of the Jishishan earthquake by incorporating data on the crustal thickness,velocity structure,global navigation satellite system(GNSS)strain field,and anisotropy.We discovered that the location of the earthquake was related to changes in the crustal structure.The results showed that the Jishishan M_(s)6.2 earthquake occurred in a unique position,with rapid changes in the crustal thickness,Vp/Vs,phase velocity,and S-wave velocity.The epicenter of the earthquake was situated at the transition zone between high and low velocities and was in proximity to a low-velocity region.Additionally,the source area is flanked by two high-velocity anomalies from the east and west.The principal compressive strain orientation near the Lajishan Fault is primarily in the NNE and NE directions,which align with the principal compressive stress direction in this region.In some areas of the Lajishan Fault,the principal compressive strain orientations show the NNW direction,consistent with the direction of the upper crustal fast-wave polarization from local earthquakes and the phase velocity azimuthal anisotropy.These features underscore the relationship between the occurrence of the Jishishan M_(s)6.2 earthquake and the deep inhomogeneous structure and deep tectonic characteristics.The NE margin of the Tibetan Plateau was thickened by crustal extension in the process of northeastward expansion,and the middle and lower crustal materials underwent structural deformation and may have been filled with salt-containing fluids during the extension process.The presence of this weak layer makes it easier for strong earthquakes to occur through the release of overlying rigid crustal stresses.However,it is unlikely that an earthquake of comparable or larger magnitude would occur in the short term(e.g.,in one year)at the Jishishan east margin fault. 展开更多
关键词 Jishishan M_(s)6.2 earthquake crustal structure anisotropy stress and strain seismogenic mechanism northeast margin of the Tibetan Plateau
下载PDF
The MW5.5 earthquake on August 6,2023,in Pingyuan,Shandong,China:A rupture on a buried fault 被引量:2
4
作者 Zhe Zhang Lisheng Xu Lihua Fang 《Earthquake Science》 2024年第1期1-12,共12页
On August 6,2023,a magnitude MW5.5 earthquake struck Pingyuan County,Dezhou City,Shandong Province,China.This event was significant as no large earthquakes had been recorded in the region for over a century,and no act... On August 6,2023,a magnitude MW5.5 earthquake struck Pingyuan County,Dezhou City,Shandong Province,China.This event was significant as no large earthquakes had been recorded in the region for over a century,and no active fault had been previously identified.This study collects 1309 P-wave arrival times and 866 S-wave arrival times from 74 seismic stations less than 200 km to the epicenter to constrain the spatial distribution of the mainshock and its 125 early aftershocks by the double difference earthquake relocation method,and selects 864 P-waveforms from 288 stations located within 800 km of the epicenter to constrain the focal mechanism solution of the mainshock through centroid moment tensor inversion.The relocation and the inversion indicate,the Pingyuan MW5.5 earthquake was caused by a rupture on a buried fault,likely an extensive segment of the Gaotang fault.This buried fault exhibited a dip of approximately 75°to the northwest,with a strike of 222°,similar to the Gaotang fault.The rupture initiated at the depth of 18.6 km and propagated upward and northeastward.However,the ground surface was not broken.The total duration of the rupture was~6.0 s,releasing the scalar moment of 2.5895×1017 N·m,equivalent to MW5.54.The moment rate reached the maximum only 1.4 seconds after the rupture initiation,and the 90%scalar moment was released in the first 4.6 s.In the first 1.4 seconds of the rupture process,the rupture velocity was estimated to be 2.6 km/s,slower than the local S-wave velocity.As the rupture neared its end,the rupture velocity decreased significantly.This study provides valuable insights into the seismic characteristics of the Pingyuan MW5.5 earthquake,shedding light on the previously unidentified buried fault responsible for the seismic activity in the region.Understanding the behavior of such faults is crucial for assessing seismic hazards and enhancing earthquake preparedness in the future. 展开更多
关键词 Shandong Pingyuan MW5.5 earthquake double-difference earthquake location centroid moment tensor inversion buried fault
下载PDF
Characterization and spatial analysis of coseismic landslides triggered by the Luding Ms 6.8 earthquake in the Xianshuihe fault zone, Southwest China
5
作者 GUO Changbao LI Caihong +10 位作者 YANG Zhihua NI Jiawei ZHONG Ning WANG Meng YAN Yiqiu SONG Deguang ZHANG Yanan ZHANG Xianbing WU Ruian CAO Shichao SHAO Weiwei 《Journal of Mountain Science》 SCIE CSCD 2024年第1期160-181,共22页
On September 5, 2022, a magnitude Ms 6.8 earthquake occurred along the Moxi fault in the southern part of the Xianshuihe fault zone located in the southeastern margin of the Tibetan Plateau,resulting in severe damage ... On September 5, 2022, a magnitude Ms 6.8 earthquake occurred along the Moxi fault in the southern part of the Xianshuihe fault zone located in the southeastern margin of the Tibetan Plateau,resulting in severe damage and substantial economic loss. In this study, we established a coseismic landslide database triggered by Luding Ms 6.8 earthquake, which includes 4794 landslides with a total area of 46.79 km^(2). The coseismic landslides primarily consisted of medium and small-sized landslides, characterized by shallow surface sliding. Some exhibited characteristics of high-position initiation resulted in the obstruction or partial obstruction of rivers, leading to the formation of dammed lakes. Our research found that the coseismic landslides were predominantly observed on slopes ranging from 30° to 50°, occurring at between 1000 m and 2500 m, with slope aspects varying from 90° to 180°. Landslides were also highly developed in granitic bodies that had experienced structural fracturing and strong-tomoderate weathering. Coseismic landslides concentrated within a 6 km range on both sides of the Xianshuihe and Daduhe fault zones. The area and number of coseismic landslides exhibited a negative correlation with the distance to fault lines, road networks, and river systems, as they were influenced by fault activity, road excavation, and river erosion. The coseismic landslides were mainly distributed in the southeastern region of the epicenter, exhibiting relatively concentrated patterns within the IX-degree zones such as Moxi Town, Wandong River basin, Detuo Town to Wanggangping Township. Our research findings provide important data on the coseismic landslides triggered by the Luding Ms 6.8 earthquake and reveal the spatial distribution patterns of these landslides. These findings can serve as important references for risk mitigation, reconstruction planning, and regional earthquake disaster research in the earthquake-affected area. 展开更多
关键词 Luding earthquake Coseismic landslides Remote sensing interpretation Spatial distribution Xianshuihe fault earthquake fault
下载PDF
The 2023 Turkey earthquake doublet: Earthquake relocation, seismic tomography, and stress field inversion
6
作者 HuiLi Zhan Ling Bai +3 位作者 Bagus Adi Wibowo ChaoYa Liu Kazuo Oike Yuzo Ishikawa 《Earth and Planetary Physics》 EI CAS CSCD 2024年第3期535-548,共14页
On February 6,2023,two earthquakes with magnitudes of M_(W) 7.8 and M_(W) 7.5 struck southeastern Turkey,causing significant casualties and economic losses.These seismic events occurred along the East Anatolian Fault ... On February 6,2023,two earthquakes with magnitudes of M_(W) 7.8 and M_(W) 7.5 struck southeastern Turkey,causing significant casualties and economic losses.These seismic events occurred along the East Anatolian Fault Zone,a convergent boundary between the Arabian Plate and the Anatolian Subplate.In this study,we analyze the M_(W) 7.8 and M_(W) 7.5 earthquakes by comparing their aftershock relocations,tomographic images,and stress field inversions.The earthquakes were localized in the upper crust and exhibited steep dip angles.Furthermore,the aftershocks occurred either close to the boundaries of low and high P-wave velocity anomaly zones or within the low P-wave velocity anomaly zones.The East Anatolia Fault,associated with the M_(W) 7.8 earthquake,and the SürgüFault,related to the M_(W) 7.5 earthquake,predominantly experienced shear stress.However,their western sections experienced a combination of strike-slip and tensile stresses in addition to shear stress.The ruptures of the M_(W) 7.8 and M_(W) 7.5 earthquakes appear to have bridged a seismic gap that had seen sparse seismicity over the past 200 years prior to the 2023 Turkey earthquake sequence. 展开更多
关键词 Turkey earthquake doublet earthquake relocation seismic tomography stress field SEISMICITY
下载PDF
Rapid report of source parameters of 2023 M6.2 Jishishan,Gansu earthquake sequence
7
作者 ZhiGao Yang Jie Liu +2 位作者 YingYing Zhang Wen Yang XueMei Zhang 《Earth and Planetary Physics》 EI CAS CSCD 2024年第2期436-443,共8页
The M6.2 earthquake in Jishishan,Gansu Province,on December 18,2023,caused extraordinary earthquake disasters.It was located in the northern part of the north−south seismic zone,which is a key area for earthquake moni... The M6.2 earthquake in Jishishan,Gansu Province,on December 18,2023,caused extraordinary earthquake disasters.It was located in the northern part of the north−south seismic zone,which is a key area for earthquake monitoring in China.The newly built dense strong motion stations in this area provide unprecedented conditions for high-precision earthquake relocation,especially the earthquake focal depth.This paper uses the newly built strong motion and traditional broadband seismic networks to relocate the source locations of the M3.0 and above aftershocks and to invert their focal mechanisms.The horizontal error of earthquake location is estimated to be 0.5−1 km,and the vertical error is 1−2 km.The focal depth range of aftershocks is 9.6−14.6 km,distributed in a 12-km-long strip with SSE direction.Aftershocks in the south are more concentrated horizontally and vertically,while aftershocks in the north are more scattered.The focal mechanisms of the main shock and aftershocks are relatively consistent,and the P-axis orientation is consistent with the regional strain direction.There is a seismic blank area of M3.0 and above,about 3−5 km between the main shock and aftershocks.It is suggested that the energy released by the main shock rupture is concentrated in this area.Based on the earthquake location and focal mechanism of the main shock,it is inferred that the Northern Lajishan fault zone is the seismogenic structure of the main shock,and the main shock did not occur on the main fault,but on a secondary fault.The initial rupture depth and centroid depth of the main shock were 12.8 and 14.0 km,respectively.The source rupture depth may not be the main reason for the severe earthquake disaster. 展开更多
关键词 Jishishan earthquake earthquake relocation focal mechanism strong motion data
下载PDF
Identification of earthquake induced structural damage based on synchroextracting transform
8
作者 Roshan Kumar Gaurav Kumar +4 位作者 Wei Zhao Arvind R Yadav Gang Yu Jayendra Kumar Evans Amponsah 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期475-487,共13页
Several popular time-frequency techniques,including the Wigner-Ville distribution,smoothed pseudo-Wigner-Ville distribution,wavelet transform,synchrosqueezing transform,Hilbert-Huang transform,and Gabor-Wigner transfo... Several popular time-frequency techniques,including the Wigner-Ville distribution,smoothed pseudo-Wigner-Ville distribution,wavelet transform,synchrosqueezing transform,Hilbert-Huang transform,and Gabor-Wigner transform,are investigated to determine how well they can identify damage to structures.In this work,a synchroextracting transform(SET)based on the short-time Fourier transform is proposed for estimating post-earthquake structural damage.The performance of SET for artificially generated signals and actual earthquake signals is examined with existing methods.Amongst other tested techniques,SET improves frequency resolution to a great extent by lowering the influence of smearing along the time-frequency plane.Hence,interpretation and readability with the proposed method are improved,and small changes in the time-varying frequency characteristics of the damaged buildings are easily detected through the SET method. 展开更多
关键词 CROSS-TERM damage detection earthquake signal synchroextracting transform TIME-FREQUENCY
下载PDF
Preliminary report of the September 5,2022 M_(S) 6.8 Luding earthquake,Sichuan,China 被引量:2
9
作者 Yanru An Dun Wang +12 位作者 Qiang Ma Yueren Xu Yu Li Yingying Zhang Zhumei Liu Chunmei Huang Jinrong Su Jilong Li Mingxiao Li Wenkai Chen Zhifan Wan Dengjie Kang Baoshan Wang 《Earthquake Research Advances》 CSCD 2023年第1期1-10,共10页
The 2022 M_(S)6.8 Luding earthquake is the strongest earthquake in Sichuan Province, Western China, since the 2017 M_(S)7.0 Jiuzhaigou earthquake. It occurred on the Moxi fault in the southeastern segment of the Xians... The 2022 M_(S)6.8 Luding earthquake is the strongest earthquake in Sichuan Province, Western China, since the 2017 M_(S)7.0 Jiuzhaigou earthquake. It occurred on the Moxi fault in the southeastern segment of the Xianshuihe fault, a tectonically active and mountainous region with severe secondary earthquake disasters. To better understand the seismogenic mechanism and provide scientific support for future hazard mitigation, we summarize the preliminary results of the Luding earthquake, including seismotectonic background, seismicity and mainshock source characteristics and aftershock properties, and direct and secondary damage associated with the mainshock.The peak ground displacements in the NS and EW directions observed by the nearest GNSS station SCCM are ~35 mm and ~55 mm, respectively, resulting in the maximum coseismic dislocation of 20 mm along the NWW direction, which is consistent with the sinistral slip on the Xianshuihe fault. Back-projection of teleseismic P waves suggest that the mainshock rupture propagated toward south-southeast. The seismic intensity of the mainshock estimated from the back-projection results indicates a Mercalli scale of Ⅷ or above near the ruptured area,consistent with the results from instrumental measurements and field surveys. Numerous aftershocks were reported, with the largest being M_(S)4.5. Aftershock locations(up to September 18, 2022) exhibit 3 clusters spanning an area of 100 km long and 30 km wide. The magnitude and rate of aftershocks decreased as expected, and the depths became shallower with time. The mainshock and two aftershocks show left-lateral strike-slip focal mechanisms. For the aftershock sequence, the b-value from the Gutenberg-Richter frequency-magnitude relationship, h-value, and p-value for Omori’s law for aftershock decay are 0.81, 1.4, and 1.21, respectively, indicating that this is a typical mainshock-aftershock sequence. The low b-value implies high background stress in the hypocenter region. Analysis from remote sensing satellite images and UAV data shows that the distribution of earthquake-triggered landslides was consistent with the aftershock area. Numerous small-size landslides with limited volumes were revealed, which damaged or buried the roads and severely hindered the rescue process. 展开更多
关键词 Luding earthquake Moxi fault Aftershock statistics earthquake disasters Intensity map
下载PDF
Tracing the pace of an approaching‘seismic dragon king’:Additional evidence for the Noto earthquake swarm and the 2024 M_(W) 7.5 Noto earthquake
10
作者 Yue Liu Zhongliang Wu +1 位作者 Yongxian Zhang Xiangchu Yin 《Earthquake Research Advances》 CSCD 2024年第2期7-10,共4页
‘Dragon king’theory of extreme events has been systematically proposed and discussed since 2012,the last‘year of dragon’in the Chinese lunar calendar(Sornette and Ouillon,2012;Yukalov and Sornette,2012;Sachs et al... ‘Dragon king’theory of extreme events has been systematically proposed and discussed since 2012,the last‘year of dragon’in the Chinese lunar calendar(Sornette and Ouillon,2012;Yukalov and Sornette,2012;Sachs et al.,2012),and has been under discussion till present(e.g.,Eliazar,2017;Lin et al.,2018;Glette-Iversen and Aven,2021;Premraj et al.,2021;Lei et al.,2023).In this theoretical framework based on the physics of complexity,a‘dragon king’is defined as an event so extreme that it lies outside a power-law distribution.What is of special interest is that,according to its theory,a‘dragon king’event should pose significant predictability(Sornette and Ouillon,2012).As the next‘year of dragon’approaches soon,it is worth revisiting this concept. 展开更多
关键词 earthquake SEISMIC DRAGON
下载PDF
Identifying drivers of urban landuse changes in the Wenchuan earthquake- affected area by using night-time light data
11
作者 HUANG Tao DING Mingtao +2 位作者 GENG Dongxian GAO Zemin ZHENG Hao 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1140-1159,共20页
To learn the process of urban land evolution before and after an earthquake is vital to formulate the urban reconstruction control policies and recovery measures in the earthquake-stricken areas.However,spatiotemporal... To learn the process of urban land evolution before and after an earthquake is vital to formulate the urban reconstruction control policies and recovery measures in the earthquake-stricken areas.However,spatiotemporal evolution and its driving factors of urban land in earthquake-prone areas remains limited due to the scarcity of ground observation data.This research,leveraging night-time light remote sensing imagery and land cover data,conducted a comprehensive analysis of the long-term evolution characteristics of urban land in earthquake-prone areas.It introduced methodologies for assessing the socio-economic impact and the primary natural environmental factors driving urban land evolution in these regions.To validate the proposed methods,the 2008 Wenchuan earthquake-affected area in China was selected as a representative study area.The results indicated that the average Digital Number(DN)values in socio-economically impacted areas showed a trend of rising,falling,and then rising again after the earthquake.DN values in three types of damaged areas including Type Ⅱ,Type Ⅲ,and Type Ⅳ exceeded pre-earthquake levels.The analysis of determinative factors influencing urban land evolution revealed that slope and elevation were key elements in controlling urban land expansion before the earthquake,whereas factors such as slope,elevation,lithology,and faults had a stronger influence on urban land expansion after the earthquake.It can be seen that,in view of the differences in the natural conditions of regions for post-disaster reconstruction,the local government need to actively adjust and adapt to urban spatial planning,so as to leverage the scale effect of large-scale inputs of funds,facilities,human resources and other factors after the disaster,thus enhancing resilience and recovery efficiency in response to disaster impacts. 展开更多
关键词 Wenchuan earthquake Night-time lights Urban land Post-earthquake reconstruction
下载PDF
Kinematic deformation and intensity assessment of the 2021 Maduo M_(S)7.4 earthquake in Qinghai revealed by high-frequency GNSS
12
作者 Yu Li Yuebing Wang +2 位作者 Lijiang Zhao Hongbo Shi Pingping Wang 《Geodesy and Geodynamics》 EI CSCD 2024年第3期230-240,共11页
Rapid acquisition of the kinematic deformation field and seismic intensity distribution of large earthquakes is crucial for postseismic emergency rescue,disaster assessment,and future seismic risk research.The advance... Rapid acquisition of the kinematic deformation field and seismic intensity distribution of large earthquakes is crucial for postseismic emergency rescue,disaster assessment,and future seismic risk research.The advancement of GNSS observation and data processing makes it play an important role in this field,especially the high-frequency GNSS.We used the differential positioning method to calculate the 1 HZ GNSS data from 98 sites within 1000 km of the M_(S)7.4 Maduo earthquake epicenter.The kinematic deformation field and the distribution of the seismic intensity by using the peak ground velocity derived from displacement waveforms were obtained.The results show that:1)Horizontal coseismic response deformation levels ranging from 25 mm to 301 mm can be observed within a 1000 km radius from the epicenter.Coseismic response deformation on the east and west sides shows bilateral asymmetry,which markedly differs from the symmetry presented by surface rupture.2)The seismic intensity obtained through high-frequency GNSS and field investigations exhibits good consistency of the scope and orientation in the high seismic intensity area,although the former is generally slightly smaller than the latter.3)There may exist obstacles on the eastern side of the seismogenic fault.The Maduo earthquake induced a certain tectonic stress loading effect on the western Kunlun Pass-Jiangcuo fault(KPJF)and Maqin-Maqu segment,resulting in higher seismic risk in the future. 展开更多
关键词 Maduo earthquake High-frequency GNSS Kinematic deformation Seismic intensity
下载PDF
Analytical Solution and Simplified Formula for Added Mass of Horizontal and Vertical Motions of Truncated Cylinders Under Earthquake Action
13
作者 WANG Pi-guang LYU Si-yu +2 位作者 QU Yang ZHAO Mi DU Xiu-li 《China Ocean Engineering》 SCIE EI CSCD 2024年第1期54-67,共14页
This paper investigates the hydrodynamic characteristics of floating truncated cylinders undergoing horizontal and vertical motions due to earthquake excitations in the finite water depth.The governing equation of the... This paper investigates the hydrodynamic characteristics of floating truncated cylinders undergoing horizontal and vertical motions due to earthquake excitations in the finite water depth.The governing equation of the hydrodynamic pressure acting on the cylinder is derived based on the radiation theory with the inviscid and incompressible assumptions.The governing equation is solved by using the method of separating variables and analytical solutions are obtained by assigning reasonable boundary conditions.The analytical result is validated by a numerical model using the exact artificial boundary simulation of the infinite water.The main variation and distribution characteristics of the hydrodynamic pressure acting on the side and bottom of the cylinder are analyzed for different combinations of wide-height and immersion ratios.The added mass coefficient of the cylinder is calculated by integrating the hydrodynamic pressure and simplified formulas are proposed for engineering applications.The calculation results show that the simplified formulas are in good agreement with the analytical solutions. 展开更多
关键词 earthquake hydrodynamic pressure truncated cylinder added mass simplified formula
下载PDF
Reactive Transport Process of Earthquake-induced Hydrochemical Changes in Guanding Thermal Spring,Western Sichuan,China
14
作者 NA Jin JIANG Xue +1 位作者 SHI Zheming CHEN Yanmei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第1期241-249,共9页
Earthquake-related hydrochemical changes in thermal springs have been widely observed;however,quantitative modeling of the reactive transport process is absent.In the present study,we apply reactive transport simulati... Earthquake-related hydrochemical changes in thermal springs have been widely observed;however,quantitative modeling of the reactive transport process is absent.In the present study,we apply reactive transport simulation to capture the hydrochemical responses in a thermal spring following the Wenchuan Ms 8.0 and Lushan Ms 7.0 earthquakes.We first constrain deep reservoir geothermal fluid compositions and temperature by multicomponent geothermometry,and then a reactive geochemical transport model is constructed to reproduce the hydrochemical evolution process.The results show that the recharge from the shallow aquifer increases gradually until it reaches a peak because of the permeability enhancement caused by the Lushan earthquake,which may be the mechanism to explain the earthquake-related hydrochemical responses.In contrast to the postseismic effect of the Wenchuan earthquake,the chemical evolution can be considered as hydrochemical anomalies related to the Lushan earthquake.This study proves that the efficient simulation of reactive transport processes is useful for investigating earthquake-related signals in hydrochemical time series. 展开更多
关键词 earthquake hydrochemical changes reactive geochemical transport model Kangding area
下载PDF
The Formation of Oscillation Patterns Based on the Planetary Gravitational Field and Their Suitability for Earthquake Prediction
15
作者 Michael E. Nitsche 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期149-157,共9页
The fluctuating planetary gravitational field influences not only activities on the Sun but also on the Earth. A special correlation function describes the harmonics of these fluctuations. Groups of earthquakes form o... The fluctuating planetary gravitational field influences not only activities on the Sun but also on the Earth. A special correlation function describes the harmonics of these fluctuations. Groups of earthquakes form oscillation patterns that differ significantly from randomly chosen control groups. These patterns are suitable as an element of an AI for the probability of earthquakes. 展开更多
关键词 Planetary Gravitational Field earthquake Prediction AI
下载PDF
Lithospheric strength of the Anatolian plateau and implications for strong earthquake activity in Turkey
16
作者 Yuhang Pan Shi Chen Wen Shi 《Geodesy and Geodynamics》 EI CSCD 2024年第3期209-218,共10页
On February 6, 2023, the doublet earthquake including two main shocks with magnitudes M_(W)7.8 and M_(W)7.5, occurred near the western side of the East Anatolian Fault at the southeast boundary of the Anatolian Platea... On February 6, 2023, the doublet earthquake including two main shocks with magnitudes M_(W)7.8 and M_(W)7.5, occurred near the western side of the East Anatolian Fault at the southeast boundary of the Anatolian Plateau in Turkey. Based on the WGM2012 Bouguer gravity anomaly data and the Etopo1topography data, this study first introduced a joint inversion of admittance and coherence functions and used the Bayesian optimal parameter estimation method to obtain the effective elastic thickness Teand loading ratio F of the lithosphere for various tectonic units in the Anatolian Plateau. Secondly, we discussed the characteristics and influencing factors of the lithospheric mechanical strength and analyzed its relationship with seismic activity. The lithospheric mechanical strength of the Anatolian Plateau showed clear lateral heterogeneity and a "weak-strong-weak" spatial pattern from east to west,reflecting various tectonic processes. At last, the strong seismic activity was found where the lithospheric strength was low in the Anatolian Plate. We also incorporated GPS strain rate and other results to investigate the tectonic background and primary causes of the M_(W)7.8 and M_(W)7.5 doublet earthquakes in Turkey. The results have a good insight into urban safety design in the Turkish region, including postdisaster rehabilitation, earthquake hazard assessment, and loss reduction. 展开更多
关键词 Effective elastic thickness anatolian plateau Turkey doublet earthquakes Bayesian optimization
下载PDF
Dynamic response of mountain tunnel,bridge,and embankment along the Sichuan-Tibet transportation corridor to active fault based on model tests
17
作者 HUANG Beixiu QIAO Sijia +2 位作者 CHEN Xulei LI Lihui QI Shengwen 《Journal of Mountain Science》 SCIE CSCD 2024年第1期182-199,共18页
The Sichuan-Tibet transportation corridor is prone to numerous active faults and frequent strong earthquakes.While extensive studies have individually explored the effect of active faults and strong earthquakes on dif... The Sichuan-Tibet transportation corridor is prone to numerous active faults and frequent strong earthquakes.While extensive studies have individually explored the effect of active faults and strong earthquakes on different engineering structures,their combined effect remains unclear.This research employed multiple physical model tests to investigate the dynamic response of various engineering structures,including tunnels,bridges,and embankments,under the simultaneous influence of cumulative earthquakes and stick-slip misalignment of an active fault.The prototype selected for this study was the Kanding No.2 tunnel,which crosses the Yunongxi fault zone within the Sichuan-Tibet transportation corridor.The results demonstrated that the tunnel,bridge,and embankment exhibited amplification in response to the input seismic wave,with the amplification effect gradually decreasing as the input peak ground acceleration(PGA)increased.The PGAs of different engineering structures were weakened by the fault rupture zone.Nevertheless,the misalignment of the active fault may decrease the overall stiffness of the engineering structure,leading to more severe damage,with a small contribution from seismic vibration.Additionally,the seismic vibration effect might be enlarged with the height of the engineering structure,and the tunnel is supposed to have a smaller PGA and lower dynamic earth pressure compared to bridges and embankments in strong earthquake zones crossing active faults.The findings contribute valuable insights for evaluating the dynamic response of various engineering structures crossing an active fault and provide an experimental reference for secure engineering design in the challenging conditions of the Sichuan-Tibet transportation corridor. 展开更多
关键词 Dynamic response Engineering structure Sichuan-Tibet transportation corridor Active fault earthquake Model test
下载PDF
Investigating the reactivation of historical landslides during the 2022 Luding M_(S)6.8 earthquake
18
作者 Tao Wei Mingyao Xia +1 位作者 Xinxin Zhang Shaojian Qi 《Earthquake Science》 2024年第3期200-209,共10页
On September 5,2022,a strong earthquake with a magnitude of MS6.8 struck Luding County in Sichuan Province,China,triggering thousands of landslides along the Dadu River in the northwest-southeast(NW-SE)direction.We in... On September 5,2022,a strong earthquake with a magnitude of MS6.8 struck Luding County in Sichuan Province,China,triggering thousands of landslides along the Dadu River in the northwest-southeast(NW-SE)direction.We investigated the reactivation characteristics of historical landslides within the epicentral area of the Luding earthquake to identify the initiation mechanism of earthquake-induced landslides.Records of the two newly triggered and historical landslides were analyzed using manual and threshold methods;the spatial distribution of landslides was assessed in relation to topographical and geological factors using remote sensing images.This study sheds light on the spatial distribution patterns of landslides,especially those that occur above historical landslide areas.Our results revealed a similarity in the spatial distribution trends between historical landslides and new ones induced by earthquakes.These landslides tend to be concentrated within a range of 0.2 km from the river and 2 km from the fault.Notably,both rivers and faults predominantly influenced the reactivation of historical landslides.Remarkably,the reactivated landslides are characterized by their small to medium size and are predominantly situated in historical landslide zones.The number of reactivated landslides surpassed that of previously documented historical landslides within the study area.We provide insights into the critical factors responsible for historical landslides during the 2022 Luding earthquake,thereby enhancing our understanding of the potential implications for future co-seismic hazard assessments and mitigation strategies. 展开更多
关键词 Luding earthquake co-seismic landslides historical landslides spatial distribution landslide reactivation
下载PDF
Microearthquake reveals the lithospheric structure at midocean ridges and oceanic transform faults
19
作者 Zhiteng YU Jiabiao LI Weiwei DING 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第3期697-700,共4页
Mid-ocean ridge and oceanic transforms are among the most prominent features on the seafloor surface and are crucial for understanding seafloor spreading and plate tectonic dynamics,but the deep structure of the ocean... Mid-ocean ridge and oceanic transforms are among the most prominent features on the seafloor surface and are crucial for understanding seafloor spreading and plate tectonic dynamics,but the deep structure of the oceanic lithosphere remains poorly understood.The large number of microearthquakes occurring along ridges and transforms provide valuable information for gaining an indepth view of the underlying detailed seismic structures,contributing to understanding geodynamic processes within the oceanic lithosphere.Previous studies have indicated that the maximum depth of microseismicity is controlled by the 600-℃isotherm.However,this perspective is being challenged due to increasing observations of deep earthquakes that far exceed this suggested isotherm along mid-ocean ridges and oceanic transform faults.Several mechanisms have been proposed to explain these deep events,and we suggest that local geodynamic processes(e.g.,magma supply,mylonite shear zone,longlived faults,hydrothermal vents,etc.)likely play a more important role than previously thought. 展开更多
关键词 microearthquake mid-ocean ridge oceanic transform fault oceanic lithosphere thermal structure earthquake location
下载PDF
Is the September 5,2022,Luding MS6.8 earthquake an‘unexpected’event? 被引量:1
20
作者 Shengfeng Zhang Zhongliang Wu Yongxian Zhang 《Earthquake Science》 2023年第1期76-80,共5页
After the September 5,2022(Beijing time).Luding Ms6.8 earthquake(29.59°N.102.08°E.depth 16 km.according to the initial determination by the China Earthquake Networks Center(CENC)).field investigation was car... After the September 5,2022(Beijing time).Luding Ms6.8 earthquake(29.59°N.102.08°E.depth 16 km.according to the initial determination by the China Earthquake Networks Center(CENC)).field investigation was carried out by the China Earthquake Administration(CEA).which associated the earthquake to the Moxi segment on the south part of the Xianshuihe fault system.This segment,with horizontal slip rate 5-10 mm/a.locates in the convergent part among the Xianshuihe fault. 展开更多
关键词 Luding MS6.8 earthquake ‘nowcasting earthquakes’ ‘natural time’ earthquake potential score(EPS)
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部