In this paper,we construct a new sixth order iterative method for solving nonlinear equations.The local convergence and order of convergence of the new iterative method is demonstrated.In order to check the validity o...In this paper,we construct a new sixth order iterative method for solving nonlinear equations.The local convergence and order of convergence of the new iterative method is demonstrated.In order to check the validity of the new iterative method,we employ several chemical engineering applications and academic test problems.Numerical results show the good numerical performance of the new iterative method.Moreover,the dynamical study of the new method also supports the theoretical results.展开更多
In this work, we will derive a numerical method of sixth order in space and second order in time for solving 3-coupled nonlinear Schr<span style="white-space:nowrap;"><span style="white-space:n...In this work, we will derive a numerical method of sixth order in space and second order in time for solving 3-coupled nonlinear Schr<span style="white-space:nowrap;"><span style="white-space:nowrap;">ö</span></span>dinger equations. The numerical method is unconditionally stable. We use the exact single soliton solution and the conserved quantities to check the accuracy and the efficiency of the proposed schemes. Also, we study the interaction dynamics of two solitons. It is found that both elastic and inelastic collisions can take place under suitable parametric conditions.展开更多
Models of the coupled nonlinear Schr<span style="white-space:nowrap;">ö</span>dinger equations submit various critical physical phenomena with a typical equation for optical fibres with ...Models of the coupled nonlinear Schr<span style="white-space:nowrap;">ö</span>dinger equations submit various critical physical phenomena with a typical equation for optical fibres with linear refraction. In this article, we will presuppose the Compact Finite Difference method with Runge-Kutta of order 4 (explicit) method, which is sixth-order and fourth-order in space and time respectively, to solve coupled nonlinear Schr<span style="white-space:nowrap;">ö</span>dinger equations. Many methods used to solve coupled nonlinear Schr<span style="white-space:nowrap;">ö</span>dinger equations are second order in time and need to use extra-technique to rise up to fourth-order as Richardson Extrapolation technique. The scheme obtained is immediately fourth-order in one step. This approach is a conditionally stable method. The conserved quantities and the exact single soliton solution indicate the competence and accuracy of the article’s suggestion schemes. Furthermore, the article discusses the two solitons interaction dynamics.展开更多
An approximate homotopy symmetry method for nonlinear problems is proposed and applied to the sixth-order Boussinesq equation,which arises from fluid dynamics.We summarize the general formulas for similarity reduction...An approximate homotopy symmetry method for nonlinear problems is proposed and applied to the sixth-order Boussinesq equation,which arises from fluid dynamics.We summarize the general formulas for similarity reduction solutions and similarity reduction equations of different orders,educing the related homotopy series solutions.Zero-order similarity reduction equations are equivalent to the Painlevé IV type equation or Weierstrass elliptic equation.Higher order similarity solutions can be obtained by solving linear variable coefficients ordinary differential equations.The auxiliary parameter has an effect on the convergence of homotopy series solutions.Series solutions and similarity reduction equations from the approximate symmetry method can be retrieved from the approximate homotopy symmetry method.展开更多
In this paper, based on the theory of rooted trees and B-series, we propose the concrete formulas of the substitution law for the trees of order = 5. With the help of the new substitution law, we derive a B-series int...In this paper, based on the theory of rooted trees and B-series, we propose the concrete formulas of the substitution law for the trees of order = 5. With the help of the new substitution law, we derive a B-series integrator extending the averaged vector field (AVF) methods for general Hamiltonian system to higher order. The new integrator turns out to be order of six and exactly preserves energy for Hamiltonian systems. Numerical exper- iments are presented to demonstrate the accuracy and the energy-preserving property of the sixth order AVF method.展开更多
基金supported by the National Natural Science Foundation of China (No.12271518)the Key Program of the National Natural Science Foundation of China (No.62333016)。
文摘In this paper,we construct a new sixth order iterative method for solving nonlinear equations.The local convergence and order of convergence of the new iterative method is demonstrated.In order to check the validity of the new iterative method,we employ several chemical engineering applications and academic test problems.Numerical results show the good numerical performance of the new iterative method.Moreover,the dynamical study of the new method also supports the theoretical results.
文摘In this work, we will derive a numerical method of sixth order in space and second order in time for solving 3-coupled nonlinear Schr<span style="white-space:nowrap;"><span style="white-space:nowrap;">ö</span></span>dinger equations. The numerical method is unconditionally stable. We use the exact single soliton solution and the conserved quantities to check the accuracy and the efficiency of the proposed schemes. Also, we study the interaction dynamics of two solitons. It is found that both elastic and inelastic collisions can take place under suitable parametric conditions.
文摘Models of the coupled nonlinear Schr<span style="white-space:nowrap;">ö</span>dinger equations submit various critical physical phenomena with a typical equation for optical fibres with linear refraction. In this article, we will presuppose the Compact Finite Difference method with Runge-Kutta of order 4 (explicit) method, which is sixth-order and fourth-order in space and time respectively, to solve coupled nonlinear Schr<span style="white-space:nowrap;">ö</span>dinger equations. Many methods used to solve coupled nonlinear Schr<span style="white-space:nowrap;">ö</span>dinger equations are second order in time and need to use extra-technique to rise up to fourth-order as Richardson Extrapolation technique. The scheme obtained is immediately fourth-order in one step. This approach is a conditionally stable method. The conserved quantities and the exact single soliton solution indicate the competence and accuracy of the article’s suggestion schemes. Furthermore, the article discusses the two solitons interaction dynamics.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 10735030, 10475055, 10675065, and 90503006)the National Basic Research Pro-gram of China (Grant No. 2007CB814800)+2 种基金the Program for Changjiang Scholars and Innovative Research Team (Grant No. IRT0734)the Research Fund of Postdoctoral of China (Grant No. 20070410727)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20070248120) Recommended by LIAO ShiJun
文摘An approximate homotopy symmetry method for nonlinear problems is proposed and applied to the sixth-order Boussinesq equation,which arises from fluid dynamics.We summarize the general formulas for similarity reduction solutions and similarity reduction equations of different orders,educing the related homotopy series solutions.Zero-order similarity reduction equations are equivalent to the Painlevé IV type equation or Weierstrass elliptic equation.Higher order similarity solutions can be obtained by solving linear variable coefficients ordinary differential equations.The auxiliary parameter has an effect on the convergence of homotopy series solutions.Series solutions and similarity reduction equations from the approximate symmetry method can be retrieved from the approximate homotopy symmetry method.
文摘In this paper, based on the theory of rooted trees and B-series, we propose the concrete formulas of the substitution law for the trees of order = 5. With the help of the new substitution law, we derive a B-series integrator extending the averaged vector field (AVF) methods for general Hamiltonian system to higher order. The new integrator turns out to be order of six and exactly preserves energy for Hamiltonian systems. Numerical exper- iments are presented to demonstrate the accuracy and the energy-preserving property of the sixth order AVF method.
基金Basic and Cutting-edge Technology Research Projrcts of He'nan Province(092300410045)The National Science Foundation of the Education Department of He'nan Province(2010A520045)