期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Effect of a Trace of Bi and Ni on the Microstructure and Wetting Properties of Sn-Zn-Cu Lead-Free Solder
1
作者 Haitao MA Haiping XIE Lai WANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第1期81-84,共4页
The microstructure and melting behavior of Sn-9Zn-2Cu (SZC) lead-free solder with 3 wt pct Bi and various amount of Ni additions were studied. The wetting properties and the interracial reaction of Sn-Zn-Cu with Cu ... The microstructure and melting behavior of Sn-9Zn-2Cu (SZC) lead-free solder with 3 wt pct Bi and various amount of Ni additions were studied. The wetting properties and the interracial reaction of Sn-Zn-Cu with Cu substrate were also examined. The results indicated that the addition of 3 wt pct Bi could decrease the melting point of the solder and Ni would refine the microstructure and the rod-shape Cu5Zn8 phase changed into square-shape (Cu, Ni)5Zn8 phase. The addition of Bi, Ni greatly improved the wettability of SZC solder. In addition, the interracial phase of the solders/Cu joint was typical planar Cu5Zn8 in SZC-3Bi-INi alloy. 展开更多
关键词 lead-free solder MICROSTRUCTURE Wetting property interfacial reaction Intermetallic compounds
下载PDF
Wetting Behavior and Interfacial Reactions in (Sn-9Zn)-2Cu/Ni Joints during Soldering and Isothermal Aging
2
作者 Ning Zhao Haitao Ma Haiping Xie Lai Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第3期410-414,共5页
The wetting property of (Sn-9Zn)-2Cu (wt pct) on Ni substrate and the evolution of interracial microstructure in (Sn-9Zn)-2Cu/Ni joints during soldering as well as isothermal aging were studied. The wetting abil... The wetting property of (Sn-9Zn)-2Cu (wt pct) on Ni substrate and the evolution of interracial microstructure in (Sn-9Zn)-2Cu/Ni joints during soldering as well as isothermal aging were studied. The wetting ability of eutectic Sn-gZn solder on Ni substrate was markedly improved by adding 2 wt pct Cu into this solder alloy. Plate-like Cu5Zn8 intermetallic compounds (IMCs) were detected in (Sn-9Zn)-2Cu solder matrix. A continuous NisZn21 IMC layer was formed at (Sn-9Zn)-2Cu/Ni interface after soldering. This IMC layer kept its type and integrality even after aging at 170℃ for up to 1000 h. At the early aging stage (before 500 h), the IMC layer grew fast and its thickness followed a linear relationship with the square root of aging time. Thereafter, however, the thickness increased very slowly with longer aging time. When the joints were aged for 1000 h, a new IMC phase, (Cu,Ni)5Zn8, was found in the matrix near the interface. The formation of (Cu,Ni)5Zns phase can be attributed to the diffusion of Ni atoms into the solder matrix from the substrate. 展开更多
关键词 lead-free solder interfacial reaction Intermetallic compounds AGING
下载PDF
Interfacial IMC Growth and Nanomechanical Characterizations of Solder in Sn-16Sb/Cu Joints during Solid-state Aging
3
作者 BI Xiaoyang HU Xiaowu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第5期1210-1219,共10页
The effects of aging time and temperature on the formation and growth behavior of interfacial intermetallic compound(IMC) of Sn-16 Sb/Cu(wt%) solder joints prepared by using dip soldering were investigated. The result... The effects of aging time and temperature on the formation and growth behavior of interfacial intermetallic compound(IMC) of Sn-16 Sb/Cu(wt%) solder joints prepared by using dip soldering were investigated. The results show that the major IMCs between Sn-16 Sb solder and Cu substrate after thermal aging are Cu3 Sn and Cu6 Sn5. The thickness of the interfacial IMC in Sn-16 Sb/Cu is linearly against the square root of aging time, which indicates that the growth of IMC is mainly controlled by diffusion between Cu and Sn atoms. By using linear regression method, the growth rate constants of interfacial IMC layers are 1.254×10^-18, 8.821×10^-18 and 1.22×10^-17 m^2 s^-1 for Sn-16 Sb/Cu joints aged at 120, 150 and 170 ℃, respectively. Besides, the activation energy of the interfacial IMC growth was also calculated to be 68.27 kJ/mol. The IMC grain diameters after aging treatment increase with the increasing aging time, with i e, d = 0.492 t0.106, d = 0.543 t0.143 and d = 0.290 t0.263 for aging temperatures of 120, 150 and 170 ℃, respectively. Besides, by using nanoindentation, the softening of Sn-16 Sb solder was found during aging treatment. Moreover, the U-shape evolution of the values in hardness and Young’s moduli was found in this work. 展开更多
关键词 lead-free solder AGING treatment INTERMETALLIC compound interfacial reaction NANOINDENTATION
下载PDF
Solder Size Effect on Early Stage Interfacial Intermetallic Compound Evolution in Wetting Reaction of Sn3.0Ag0.5Cu/ENEPIG Joints 被引量:2
4
作者 M.L.Huang F.Yang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2015年第3期252-256,共5页
Solder size effect on early stage interfacial intermetallic compound(IMC) evolution in wetting reaction between Sne3.0Age0.5Cu solder balls and electroless nickel electroless palladium immersion gold(ENEPIG) pads at 2... Solder size effect on early stage interfacial intermetallic compound(IMC) evolution in wetting reaction between Sne3.0Age0.5Cu solder balls and electroless nickel electroless palladium immersion gold(ENEPIG) pads at 250 C was investigated. The interfacial IMCs transformed from initial needle- and rodtype(Cu,Ni)6Sn5to dodecahedron-type(Cu,Ni)6Sn5and then to needle-type(Ni,Cu)3Sn4at the early interfacial reaction stage. Moreover, these IMC transformations occurred earlier in the smaller solder joints, where the decreasing rate of Cu concentration was faster due to the Cu consumption by the formation of interfacial(Cu,Ni)6Sn5. On thermodynamics, the decrease of Cu concentration in liquid solder changed the phase equilibrium at the interface and thus resulted in the evolution of interfacial IMCs; on kinetics, larger solder joints had sufficient Cu flux toward the interface to feed the(Cu,Ni)6Sn5growth in contrast to smaller solder joints, thus resulted in the delayed IMC transformation and the formation of larger dodecahedron-type(Cu,Ni)6Sn5grains. In smaller solders, no spalling but the consumption of(Cu,Ni)6Sn5grains by the formation of(Ni,Cu)3Sn4grains occurred where smaller discrete(Cu,Ni)6Sn5grains formed at the interface. 展开更多
关键词 size effect lead-free solder interfacial reaction
原文传递
Wetting Behaviors and Interfacial Reaction between Sn-10Sb-5Cu High Temperature Lead-free Solder and Cu Substrate 被引量:6
5
作者 Qiulian Zeng Jianjun Guo +2 位作者 Xiaolong Gu Xinbing Zhao Xiaogang Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2010年第2期156-162,共7页
Sn-10Sb-5Cu lead-free solder was fabricated for high temperature application in electronic package. Wetting behaviors and interfacial reaction between such a high temperature lead-free solder and Cu substrate were inv... Sn-10Sb-5Cu lead-free solder was fabricated for high temperature application in electronic package. Wetting behaviors and interfacial reaction between such a high temperature lead-free solder and Cu substrate were investigated and compared with those of 95Pb-Sn solder. The results showed that the wetting properties of Sn-10Sb-SCu solder are superior to those of 95Pb-Sn solder in maximum wetting force, wetting time and wetting angle in the temperature range of 340-400℃. However, the surface of the Sn-10Sb-5Cu solder sample after wetting balance tests was rougher than that of 95Pb-Sn solder at the temperature lower than 360℃. In static liquid-state interracial reaction, the types and thickness of the intermetallic compounds (IMCs) of both solders were different from each other. The wetting kinetics in the Sn-10Sb-5Cu/Cu system was more rapid than that in 95Pb-Sn/Cu system, and the higher formation rate of IMCs in the former system was considered as the reason. 展开更多
关键词 WETTING interfacial reaction High temperature lead-free solder Sn-10Sb-5Cu solder
原文传递
Significant Inhibition of IMCs Growth between an Electroless Ni-W-P Metallization and SAC305 Solder During Soldering and Aging 被引量:1
6
作者 XU Tao HU Xiaowu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第1期165-175,共11页
The formation and growth behavior of intermetallic compound(IMC) layers after introducing an electroless Ni-W-P metallization into the Sn-3.0Ag-0.5Cu(SAC305) solder joint during soldering and aging were investigated. ... The formation and growth behavior of intermetallic compound(IMC) layers after introducing an electroless Ni-W-P metallization into the Sn-3.0Ag-0.5Cu(SAC305) solder joint during soldering and aging were investigated. The soldering was performed at 250 ℃ for 10 min, followed by air cooling and aging treatment at 150 ℃ up to 15 days. The results show that the scallop-like Cu_6Sn_5 IMC layer and planar-like Cu_3Sn formed between solder and Cu substrate during soldering and aging. The Ni_3P and(Ni,Cu)_3Sn_4 compounds were formed between electroless Ni-W-P layer and solder, and Cu substrate was not damaged and kept a smooth interface. When the isothermal aging treatment was applied, the total thickness of IMCs which formed at the SAC305/Cu and SAC305/Ni-W-P/Cu interface increased with increasing aging time. Kirkendall voids emerged at the Cu_3Sn and the Ni_3P layers, but the voids emerged at the Ni_3P layer in the form of crack. The amount of Kirkendall voids increased and the crack elongated with increasing aging time. The Cu_6Sn_5 and(Ni,Cu)_3Sn_4grains grew by merging adjacent grains. In the process of growth, the growing interfacial compounds filled the free space, and new columnar dendrite grain of(Ni,Cu)_3Sn_4 constantly generated during aging treatment. After 15 days aging, the Ni-W-P barrier layer was still remained, which indicated that the Ni-W-P layer can be a good barrier layer between the solder alloys and Cu substrate. 展开更多
关键词 lead-free solder INTERMETALLIC compound ELECTROLESS NI-W-P interfacial reaction isothermal AGING
下载PDF
无铅微电子封装互连焊点中的尺寸效应研究
7
作者 李望云 尹立孟 +1 位作者 位松 许章亮 《重庆科技学院学报:自然科学版》 CAS
从微焊点的界面反应与组织演化,以及微焊点的力学行为与性能等方面,阐述无铅微互连焊点尺寸效应研究的现状。
关键词 微焊点 界面反应 力学行为 尺寸效应
下载PDF
航天电子微焊点液-固界面反应过程中的尺寸效应与工艺优化
8
作者 黄明亮 尹斯奇 +2 位作者 周德祥 暴杰 赵凡志 《微电子学与计算机》 2023年第11期136-142,共7页
针对微型化趋势下焊球的尺寸效应问题,研究了航天电子微焊点互连工艺过程中液-固界面反应与微观组织的影响规律,并对互连工艺进行了优化.具体研究了不同直径(200、400μm)的Sn-3.0Ag-0.5Cu和Sn-37Pb焊球分别在球栅阵列(BGA)器件侧金属化... 针对微型化趋势下焊球的尺寸效应问题,研究了航天电子微焊点互连工艺过程中液-固界面反应与微观组织的影响规律,并对互连工艺进行了优化.具体研究了不同直径(200、400μm)的Sn-3.0Ag-0.5Cu和Sn-37Pb焊球分别在球栅阵列(BGA)器件侧金属化层(电镀Ni/Au)上进行单侧植球回流焊后的尺寸效应现象.研究结果表明:Sn-37Pb焊点界面处生成针状或短棒状的Ni3Sn4类型的金属间化合物(IMC)晶粒;Sn-3.0Ag-0.5Cu焊点界面处生成不规则的块状(Cu,Ni)6Sn5晶粒.两种类型的焊点在液-固界面反应过程中均表现出明显的尺寸效应现象,即焊球尺寸越小,界面生成的IMC晶粒直径越大,IMC层越厚.基于建立的浓度梯度控制(CGC)界面反应理论模型,揭示了界面反应尺寸效应产生的原因与界面反应进程中界面溶质原子的浓度梯度相关,较小尺寸焊点界面处的溶质原子浓度梯度较小,溶质原子扩散通量较低,形成的界面IMC晶粒较大.基于CGC界面反应理论模型,对200μm直径Sn-3.0Ag-0.5Cu焊点的单侧植球回流焊工艺参数进行了优化,工艺优化后界面生成的IMC晶粒直径减小了约60%,并且焊点在150 oC高温时效1000 h后的剪切强度提高了34%. 展开更多
关键词 微焊点 尺寸效应 界面反应 工艺优化
下载PDF
液-固电迁移Ni/Sn-9Zn/Ni焊点反极性效应研究 被引量:5
9
作者 黄明亮 张志杰 +1 位作者 冯晓飞 赵宁 《金属学报》 SCIE EI CAS CSCD 北大核心 2015年第1期93-99,共7页
研究了230℃,5×103A/cm2条件下液-固电迁移对Ni/Sn-9Zn/Ni线性焊点界面反应的影响.在液-固电迁移过程中,Ni/Sn-9Zn/Ni焊点表现出明显的反极性效应,即阴极界面金属间化合物(IMC)持续生长变厚,并且一直厚于阳极界面IMC.由于排除背应... 研究了230℃,5×103A/cm2条件下液-固电迁移对Ni/Sn-9Zn/Ni线性焊点界面反应的影响.在液-固电迁移过程中,Ni/Sn-9Zn/Ni焊点表现出明显的反极性效应,即阴极界面金属间化合物(IMC)持续生长变厚,并且一直厚于阳极界面IMC.由于排除背应力的影响,Sn-9Zn液态钎料中Zn原子的反常迁移行为归因于其有效电荷数在高温下为正值,即在电子风力作用下Zn原子向阴极界面定向迁移,从而导致焊点在液-固电迁移过程中发生反极性效应.回流焊后,Ni/Sn-9Zn/Ni焊点两侧界面上均生成了较薄的Ni5Zn21层.液-固界面反应过程中(无电流)焊点两侧界面IMC均随时间延长而生长变厚,从而消耗钎料中的Zn原子并使界面处的相平衡发生变化,导致界面IMC由Ni5Zn21转变为[Ni5Zn21+(Ni,Zn)3Sn4].与之相较,液-固电迁移过程中阴阳两极界面IMC的类型一直为Ni5Zn21,并未发生IMC类型的转变.这是由于,在电子风力作用下,阴极界面附近钎料中Zn原子的含量充足,Zn与Ni反应生成Ni5Zn21型IMC;同时,电子风力也阻碍了Zn原子向阳极界面的扩散,从而抑制了阳极界面IMC的生长,导致界面IMC较薄,因此阳极界面也未发生IMC类型的转变.此外,运用反证法进一步验证了Zn的有效电荷数在高温下是正值. 展开更多
关键词 反极性效应 Sn-9Zn焊点 电迁移 界面反应 金属间化合物
原文传递
电流密度对Cu/Sn-9Zn/Ni焊点液-固电迁移行为的影响 被引量:2
10
作者 陈雷达 张志杰 +1 位作者 黄明亮 李宝霞 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2020年第5期1629-1636,共8页
采用同步辐射实时成像技术对比研究了不同电流密度对Cu/Sn-9Zn/Ni焊点液-固电迁移行为和界面反应的影响。结果表明,当电流密度为5.0×103 A/cm2时,无论电子方向如何,钎料中的Zn原子均定向扩散至Cu侧界面参与界面反应,导致Cu侧界面... 采用同步辐射实时成像技术对比研究了不同电流密度对Cu/Sn-9Zn/Ni焊点液-固电迁移行为和界面反应的影响。结果表明,当电流密度为5.0×103 A/cm2时,无论电子方向如何,钎料中的Zn原子均定向扩散至Cu侧界面参与界面反应,导致Cu侧界面处金属间化合物(intermetallic compounds,IMC)的厚度大于Ni侧界面处IMC的厚度;而当电流密度升高至1.0×104和2.0×104 A/cm2时,钎料中的Zn原子均定向扩散至阴极界面,界面IMC的生长表现为“反极性效应”,电流密度越高界面IMC的“反极性效应”越显著。液-固电迁移过程中Cu基体消耗明显,特别是在高电流密度条件下,电子从Ni侧流向Cu侧时,Cu基体的溶解厚度与时间呈现线性关系,电流密度越高Cu基体的溶解速率越快。此外,基于焊点中原子电迁移通量Jem和化学势通量Jchem对Zn原子和Cu在不同电流密度下的迁移行为进行了研究。 展开更多
关键词 Sn-9Zn焊点 电迁移 界面反应 金属间化合物 反极性效应
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部