Effects of nonparabolicity of energy band on thermopower, in-plane effective mass and Fermi energy are inves- tigated in size-quantized semiconductor films in a strong while non-quantized magnetic field. We obtain the...Effects of nonparabolicity of energy band on thermopower, in-plane effective mass and Fermi energy are inves- tigated in size-quantized semiconductor films in a strong while non-quantized magnetic field. We obtain the expressions of these quantities as functions of thickness, concentration and nonparabolicity parameter. The influence of nonparabolicity is studied for degenerate and non-degenerate electron gases, and it is shown that nonparabolicity changes the character of thickness and the concentration dependence of thermopower, in-plane effective mass and Fermi energy. Moreover, the magnitudes of these quantities significantly increase with respect to the nonparabolicity parameter in the case of strong nonparabolicity in nano-films. The concentration depen- dence is also studied, and it is shown that thermopower increases when the concentration decreases. These results are in agreement with the experimental data.展开更多
文摘Effects of nonparabolicity of energy band on thermopower, in-plane effective mass and Fermi energy are inves- tigated in size-quantized semiconductor films in a strong while non-quantized magnetic field. We obtain the expressions of these quantities as functions of thickness, concentration and nonparabolicity parameter. The influence of nonparabolicity is studied for degenerate and non-degenerate electron gases, and it is shown that nonparabolicity changes the character of thickness and the concentration dependence of thermopower, in-plane effective mass and Fermi energy. Moreover, the magnitudes of these quantities significantly increase with respect to the nonparabolicity parameter in the case of strong nonparabolicity in nano-films. The concentration depen- dence is also studied, and it is shown that thermopower increases when the concentration decreases. These results are in agreement with the experimental data.