Although some porphyry-skarn deposits occur in post-collisional extensional settings,the post-collisional deposits remain poorly understood.Here the authors describe the igneous geology,and mineralization history of T...Although some porphyry-skarn deposits occur in post-collisional extensional settings,the post-collisional deposits remain poorly understood.Here the authors describe the igneous geology,and mineralization history of Tuolangla,a newly-discovered porphyry-skarn Cu-W-Mo deposit in southern Tibet that belongs to the post-collisional class.The deposit is associated with Lower Cretaceous Bima Formation.It was intruded by granodiorite porphyry intrusions at about 23.1 Ma.Field investigation indicated that mineralization is spatially and temporally associated with granodiorite porphyry.Molybdenite yielded a Re-Os weighted mean age of 23.5±0.3 Ma and is considered to represent the age of skarn mineralization at the deposit.Theδ^34S values of sulfides,concentrated in a range between 0.6‰to 3.4‰,show that the sulfur has a homogeneous source with characteristics of magmatic sulfur.The Pb isotopic compositions of sulfides indicate that ore-forming metal materials were derived from the mantle and ancient crust.The granodiorite porphyry displays high SiO2(68.78%–69.75%)and K2O(3.40%–3.56%)contents,and relatively lower Cr(2.4×10^-6–4.09×10^-6),Ni(2.79×10^-6–3.58×10^-6)contents,and positiveεHf(t)values(7.7–12.9)indicating that the mineralization porphyry was derived from the partial melting of juvenile lower crust.The Tuolangla deposit is located in the central part of Zedang terrane.This terrane was once considered an ancient terrane.This terrane is in tectonic contact with Cretaceous ophiolitic rocks to its south and Mesozoic continental margin arc volcanics and intrusions of the Gangdese batholith of the Lhasa terrane to its north.Thus,the authors proposed that the Oligocene porphyry skarn Cu-W-Mo mineralization is probably associated with the Zedang terrane.This finding may clarify why the Oligocene(about 23 Ma)deposits are found only in the Zedang area and why mineralization types of the Oligocene mineralization are considerably different from those of the Miocene(17–14 Ma)mineralization.展开更多
The Weiquan Ag-polymetallic deposit is located on the southern margin of the Central Asian Orogenic Belt and in the western segment of the Aqishan-Yamansu arc belt in East Tianshan,northwestern China. Its orebodies, c...The Weiquan Ag-polymetallic deposit is located on the southern margin of the Central Asian Orogenic Belt and in the western segment of the Aqishan-Yamansu arc belt in East Tianshan,northwestern China. Its orebodies, controlled by faults, occur in the lower Carboniferous volcanosedimentary rocks of the Yamansu Formation as irregular veins and lenses. Four stages of mineralization have been recognized on the basis of mineral assemblages, ore fabrics, and crosscutting relationships among the ore veins. Stage I is the skarn stage(garnet + pyroxene), Stage Ⅱ is the retrograde alteration stage(epidote + chlorite + magnetite ± hematite 士 actinolite ± quartz),Stage Ⅲ is the sulfide stage(Ag and Bi minerals + pyrite + chalcopyrite + galena + sphalerite + quartz ± calcite ± tetrahedrite),and Stage IV is the carbonate stage(quartz + calcite ± pyrite). Skarnization,silicification, carbonatization,epidotization,chloritization, sericitization, and actinolitization are the principal types of hydrothermal alteration. LAICP-MS U-Pb dating yielded ages of 326.5±4.5 and 298.5±1.5 Ma for zircons from the tuff and diorite porphyry, respectively. Given that the tuff is wall rock and that the orebodies are cut by a late diorite porphyry dike, the ages of the tuff and the diorite porphyry provide lower and upper time limits on the age of ore formation. The δ13C values of the calcite samples range from-2.5‰ to 2.3‰, the δ18OH2 Oand δDVSMOWvalues of the sulfide stage(Stage Ⅲ) vary from 1.1‰ to 5.2‰ and-111.7‰ to-66.1‰, respectively,and the δ13C, δ18OH2 Oand δDV-SMOWvalues of calcite in one Stage IV sample are 1.5‰,-0.3‰, and-115.6‰, respectively. Carbon, hydrogen, and oxygen isotopic compositions indicate that the ore-forming fluids evolved gradually from magmatic to meteoric sources. The δ34SV-CDTvalues of the sulfides have a large range from-6.9‰ to 1.4‰, with an average of-2.2‰, indicating a magmatic source, possibly with sedimentary contributions. The206Pb/204Pb,207Pb/204Pb, and208Pb/204Pb ratios of the sulfides are 17.9848-18.2785,15.5188-15.6536, and 37.8125-38.4650, respectively, and one whole-rock sample at Weiquan yields206Pb/204Pb,207Pb/204Pb, and208Pb/204Pb ratios of 18.2060, 15.5674, and 38.0511,respectively. Lead isotopic systems suggest that the ore-forming materials of the Weiquan deposit were derived from a mixed source involving mantle and crustal components. Based on geological features, zircon U-Pb dating, and C-H-OS-Pb isotopic data, it can be concluded that the Weiquan polymetallic deposit is a skarn type that formed in a tectonic setting spanning a period from subduction to post-collision. The ore materials were sourced from magmatic ore-forming fluids that mixed with components derived from host rocks during their ascent, and a gradual mixing with meteoric water took place in the later stages.展开更多
Based on comprehensive petrological, geochronological, and geochemical studies, this study analyzed the relationships between the Beiya gold-polymetallic skarn deposit and quartz syenite porphyries, and discussed the ...Based on comprehensive petrological, geochronological, and geochemical studies, this study analyzed the relationships between the Beiya gold-polymetallic skarn deposit and quartz syenite porphyries, and discussed the source(s) and evolution of magmas. Our results suggest that syenite porphyries(i.e. the Wandongshan, the Dashadi, and the Hongnitang porphyries), which formed between the Eocene and the early Oligocene epochs, are the sources for the gold-polymetallic ores at the Beiya deposit. Carbonate rocks(T2 b) of the Triassic Beiya Formation in the ore district provide favorable host space for deposit formation. Fold and fault structures collectively play an important role in ore formation. The contact zone between the porphyries and carbonates, the structurally fractured zone of carbonate and clastic rocks, and the zone with well-developed fractures are the ideal locations for ore bodies. Four types of mineralization have been recognized: 1) porphyry-style stockwork gold–iron(copper) ore, 2) skarn-style gold-iron(copper and lead) ore in the near contact zone, 3) strata-bound, lense-type lead–silver–gold ore in the outer contact zone, and 4) distal vein-type gold–lead–silver ore. Supergene processes led to the formation of oxide ore, such as the weathered and accumulated gold–iron ore, the strata-bound fracture oxide ore, and the structure-controlled vein-type ore. Most of these ore deposits are distributed along the axis of the depressed basin, with the hypogene ore controlling the shape and characteristics of the oxide ore. This study provides critical geology understanding for mineral prospecting scenarios.展开更多
文摘Although some porphyry-skarn deposits occur in post-collisional extensional settings,the post-collisional deposits remain poorly understood.Here the authors describe the igneous geology,and mineralization history of Tuolangla,a newly-discovered porphyry-skarn Cu-W-Mo deposit in southern Tibet that belongs to the post-collisional class.The deposit is associated with Lower Cretaceous Bima Formation.It was intruded by granodiorite porphyry intrusions at about 23.1 Ma.Field investigation indicated that mineralization is spatially and temporally associated with granodiorite porphyry.Molybdenite yielded a Re-Os weighted mean age of 23.5±0.3 Ma and is considered to represent the age of skarn mineralization at the deposit.Theδ^34S values of sulfides,concentrated in a range between 0.6‰to 3.4‰,show that the sulfur has a homogeneous source with characteristics of magmatic sulfur.The Pb isotopic compositions of sulfides indicate that ore-forming metal materials were derived from the mantle and ancient crust.The granodiorite porphyry displays high SiO2(68.78%–69.75%)and K2O(3.40%–3.56%)contents,and relatively lower Cr(2.4×10^-6–4.09×10^-6),Ni(2.79×10^-6–3.58×10^-6)contents,and positiveεHf(t)values(7.7–12.9)indicating that the mineralization porphyry was derived from the partial melting of juvenile lower crust.The Tuolangla deposit is located in the central part of Zedang terrane.This terrane was once considered an ancient terrane.This terrane is in tectonic contact with Cretaceous ophiolitic rocks to its south and Mesozoic continental margin arc volcanics and intrusions of the Gangdese batholith of the Lhasa terrane to its north.Thus,the authors proposed that the Oligocene porphyry skarn Cu-W-Mo mineralization is probably associated with the Zedang terrane.This finding may clarify why the Oligocene(about 23 Ma)deposits are found only in the Zedang area and why mineralization types of the Oligocene mineralization are considerably different from those of the Miocene(17–14 Ma)mineralization.
基金funded by the China Geological Survey (No. 1212011220731)
文摘The Weiquan Ag-polymetallic deposit is located on the southern margin of the Central Asian Orogenic Belt and in the western segment of the Aqishan-Yamansu arc belt in East Tianshan,northwestern China. Its orebodies, controlled by faults, occur in the lower Carboniferous volcanosedimentary rocks of the Yamansu Formation as irregular veins and lenses. Four stages of mineralization have been recognized on the basis of mineral assemblages, ore fabrics, and crosscutting relationships among the ore veins. Stage I is the skarn stage(garnet + pyroxene), Stage Ⅱ is the retrograde alteration stage(epidote + chlorite + magnetite ± hematite 士 actinolite ± quartz),Stage Ⅲ is the sulfide stage(Ag and Bi minerals + pyrite + chalcopyrite + galena + sphalerite + quartz ± calcite ± tetrahedrite),and Stage IV is the carbonate stage(quartz + calcite ± pyrite). Skarnization,silicification, carbonatization,epidotization,chloritization, sericitization, and actinolitization are the principal types of hydrothermal alteration. LAICP-MS U-Pb dating yielded ages of 326.5±4.5 and 298.5±1.5 Ma for zircons from the tuff and diorite porphyry, respectively. Given that the tuff is wall rock and that the orebodies are cut by a late diorite porphyry dike, the ages of the tuff and the diorite porphyry provide lower and upper time limits on the age of ore formation. The δ13C values of the calcite samples range from-2.5‰ to 2.3‰, the δ18OH2 Oand δDVSMOWvalues of the sulfide stage(Stage Ⅲ) vary from 1.1‰ to 5.2‰ and-111.7‰ to-66.1‰, respectively,and the δ13C, δ18OH2 Oand δDV-SMOWvalues of calcite in one Stage IV sample are 1.5‰,-0.3‰, and-115.6‰, respectively. Carbon, hydrogen, and oxygen isotopic compositions indicate that the ore-forming fluids evolved gradually from magmatic to meteoric sources. The δ34SV-CDTvalues of the sulfides have a large range from-6.9‰ to 1.4‰, with an average of-2.2‰, indicating a magmatic source, possibly with sedimentary contributions. The206Pb/204Pb,207Pb/204Pb, and208Pb/204Pb ratios of the sulfides are 17.9848-18.2785,15.5188-15.6536, and 37.8125-38.4650, respectively, and one whole-rock sample at Weiquan yields206Pb/204Pb,207Pb/204Pb, and208Pb/204Pb ratios of 18.2060, 15.5674, and 38.0511,respectively. Lead isotopic systems suggest that the ore-forming materials of the Weiquan deposit were derived from a mixed source involving mantle and crustal components. Based on geological features, zircon U-Pb dating, and C-H-OS-Pb isotopic data, it can be concluded that the Weiquan polymetallic deposit is a skarn type that formed in a tectonic setting spanning a period from subduction to post-collision. The ore materials were sourced from magmatic ore-forming fluids that mixed with components derived from host rocks during their ascent, and a gradual mixing with meteoric water took place in the later stages.
基金jointly financially supported by “Yunling Scholars” Research Project from Yunnan Province,China Geological Survey Project(No.DD20160124 and 12120114013501)the National Natural Science Foundation of China(grant No.41602103)the “Study on metallogenic regularities and metallogenic series of gold-polymetallic deposits,Northwestern Yunnan Province” research project(E1107)from Yunnan Gold&Mining Group Co.,Ltd
文摘Based on comprehensive petrological, geochronological, and geochemical studies, this study analyzed the relationships between the Beiya gold-polymetallic skarn deposit and quartz syenite porphyries, and discussed the source(s) and evolution of magmas. Our results suggest that syenite porphyries(i.e. the Wandongshan, the Dashadi, and the Hongnitang porphyries), which formed between the Eocene and the early Oligocene epochs, are the sources for the gold-polymetallic ores at the Beiya deposit. Carbonate rocks(T2 b) of the Triassic Beiya Formation in the ore district provide favorable host space for deposit formation. Fold and fault structures collectively play an important role in ore formation. The contact zone between the porphyries and carbonates, the structurally fractured zone of carbonate and clastic rocks, and the zone with well-developed fractures are the ideal locations for ore bodies. Four types of mineralization have been recognized: 1) porphyry-style stockwork gold–iron(copper) ore, 2) skarn-style gold-iron(copper and lead) ore in the near contact zone, 3) strata-bound, lense-type lead–silver–gold ore in the outer contact zone, and 4) distal vein-type gold–lead–silver ore. Supergene processes led to the formation of oxide ore, such as the weathered and accumulated gold–iron ore, the strata-bound fracture oxide ore, and the structure-controlled vein-type ore. Most of these ore deposits are distributed along the axis of the depressed basin, with the hypogene ore controlling the shape and characteristics of the oxide ore. This study provides critical geology understanding for mineral prospecting scenarios.