期刊文献+
共找到257篇文章
< 1 2 13 >
每页显示 20 50 100
Crosstalk among canonical Wnt and Hippo pathway members in skeletal muscle and at the neuromuscular junction
1
作者 Said Hashemolhosseini Lea Gessler 《Neural Regeneration Research》 SCIE CAS 2025年第9期2464-2479,共16页
Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways... Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways that underlie skeletal muscle function.The process of muscle contra ction,orchestrated by a complex interplay of molecular events,is at the core of skeletal muscle function.Muscle contraction is initiated by an action potential and neuromuscular transmission requiring a neuromuscular junction.Within muscle fibers,calcium ions play a critical role in mediating the interaction between actin and myosin filaments that generate force.Regulation of calcium release from the sarcoplasmic reticulum plays a key role in excitation-contraction coupling.The development and growth of skeletal muscle are regulated by a network of molecular pathways collectively known as myogenesis.Myogenic regulators coordinate the diffe rentiation of myoblasts into mature muscle fibers.Signaling pathways regulate muscle protein synthesis and hypertrophy in response to mechanical stimuli and nutrient availability.Seve ral muscle-related diseases,including congenital myasthenic disorders,sarcopenia,muscular dystrophies,and metabolic myopathies,are underpinned by dys regulated molecular pathways in skeletal muscle.Therapeutic interventions aimed at preserving muscle mass and function,enhancing regeneration,and improving metabolic health hold promise by targeting specific molecular pathways.Other molecular signaling pathways in skeletal muscle include the canonical Wnt signaling pathway,a critical regulator of myogenesis,muscle regeneration,and metabolic function,and the Hippo signaling pathway.In recent years,more details have been uncovered about the role of these two pathways during myogenesis and in developing and adult skeletal muscle fibers,and at the neuromuscular junction.In fact,research in the last few years now suggests that these two signaling pathways are interconnected and that they jointly control physiological and pathophysiological processes in muscle fibers.In this review,we will summarize and discuss the data on these two pathways,focusing on their concerted action next to their contribution to skeletal muscle biology.However,an in-depth discussion of the noncanonical Wnt pathway,the fibro/a dipogenic precursors,or the mechanosensory aspects of these pathways is not the focus of this review. 展开更多
关键词 canonical Wnt"Wingless-related integration site"pathway beta-catenin(CTNNB1) Hippo pathway MYOGENESIS MYOTUBE neuromuscular junction satellite cell skeletal muscle fiber transcriptional co-activator with PDZ-binding motif(TAZ) T-cell-specific transcription factor/lymphoid enhancer-binding factor(TCF/LEF) TEA domain family member(TEAD) transducin-like enhancer of split(TLE) yes-associated protein 1(YAP1)
下载PDF
Assessment of skeletal muscle alterations and circulating myokines in metabolic dysfunction-associated steatotic liver disease:A crosssectional study
2
作者 Yolanda Real Martinez Carlos Ernesto Fernandez-Garcia +11 位作者 Esther Fuertes-Yebra Mario Calvo Soto Angela Berlana Vicente Barrios Maria Caldas Leticia Gonzalez Moreno Luisa Garcia-Buey Begoña Molina Baena Miguel Sampedro-Nuñez Maria J Beceiro C García-Monzón Águeda González-Rodríguez 《World Journal of Gastroenterology》 2025年第7期63-73,共11页
BACKGROUND Skeletal muscle alterations(SMAs)are being increasingly recognized in patients with metabolic dysfunctionassociated steatotic liver disease(MASLD)and appear to be associated with deleterious outcomes in the... BACKGROUND Skeletal muscle alterations(SMAs)are being increasingly recognized in patients with metabolic dysfunctionassociated steatotic liver disease(MASLD)and appear to be associated with deleterious outcomes in these patients.However,their actual prevalence and pathophysiology remain to be elucidated.AIM To determine the prevalence of SMAs and to assess the significance of circulating myokines as biomarkers in patients with MASLD.METHODS Skeletal muscle strength and muscle mass were measured in a cross-sectional study in a cohort of 62 patients fulfilling MASLD criteria,recruited from the outpatient clinics of a tertiary level hospital.The degree of fibrosis and liver steatosis was studied using abdominal ultrasound and transitional elastography.Anthropometric and metabolic characteristics as well as serum levels of different myokines were also determined in the MASLD cohort.Statistical analysis was performed comparing results according to liver fibrosis and steatosis.RESULTS No significant differences were found in both skeletal muscle strength and skeletal muscle mass in patients with MASLD between different stages of liver fibrosis.Interestingly,serum levels of fibroblast growth factor-21(FGF21)were significantly higher in patients with MASLD with advanced hepatic fibrosis(F3-F4)than in those with lower fibrosis stages(F0-F2)(197.49±198.27 pg/mL vs 95.62±83.67 pg/mL;P=0.049).In addition,patients with MASLD with severe hepatosteatosis(S3)exhibited significantly higher serum levels of irisin(1116.87±1161.86 pg/mL)than those with lower grades(S1-S2)(385.21±375.98 pg/mL;P=0.001).CONCLUSION SMAs were uncommon in the patients with MASLD studied.Higher serum levels of irisin and FGF21 were detected in patients with advanced liver steatosis and fibrosis,respectively,with potential implications as biomarkers. 展开更多
关键词 skeletal muscle alterations MYOKINES Metabolic dysfunction-associated steatotic liver disease Liver fibrosis HEPATOSTEATOSIS
下载PDF
Skeletal muscle as a molecular and cellular biomarker of disease progression in amyotrophic lateral sclerosis:a narrative review
3
作者 Peter H.King 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期747-753,共7页
Amyotrophic lateral sclerosis is a fatal multisystemic neurodegenerative disease with motor neurons being a primary target.Although progressive weakness is a hallmark feature of amyotrophic lateral sclerosis,there is ... Amyotrophic lateral sclerosis is a fatal multisystemic neurodegenerative disease with motor neurons being a primary target.Although progressive weakness is a hallmark feature of amyotrophic lateral sclerosis,there is considerable heterogeneity,including clinical presentation,progression,and the underlying triggers for disease initiation.Based on longitudinal studies with families harboring amyotrophic lateral sclerosis-associated gene mutations,it has become apparent that overt disease is preceded by a prodromal phase,possibly in years,where compensatory mechanisms delay symptom onset.Since 85-90%of amyotrophic lateral sclerosis is sporadic,there is a strong need for identifying biomarkers that can detect this prodromal phase as motor neurons have limited capacity for regeneration.Current Food and Drug Administration-approved therapies work by slowing the degenerative process and are most effective early in the disease.Skeletal muscle,including the neuromuscular junction,manifests abnormalities at the earliest stages of the disease,before motor neuron loss,making it a promising source for identifying biomarkers of the prodromal phase.The accessibility of muscle through biopsy provides a lens into the distal motor system at earlier stages and in real time.The advent of“omics”technology has led to the identification of numerous dysregulated molecules in amyotrophic lateral sclerosis muscle,ranging from coding and non-coding RNAs to proteins and metabolites.This technology has opened the door for identifying biomarkers of disease activity and providing insight into disease mechanisms.A major challenge is correlating the myriad of dysregulated molecules with clinical or histological progression and understanding their relevance to presymptomatic phases of disease.There are two major goals of this review.The first is to summarize some of the biomarkers identified in human amyotrophic lateral sclerosis muscle that have a clinicopathological correlation with disease activity,evidence of a similar dysregulation in the SOD1G93A mouse during presymptomatic stages,and evidence of progressive change during disease progression.The second goal is to review the molecular pathways these biomarkers reflect and their potential role in mitigating or promoting disease progression,and as such,their potential as therapeutic targets in amyotrophic lateral sclerosis. 展开更多
关键词 amyotrophic lateral sclerosis biomarkers clinicopathological correlation disease progression muscle biomarkers neurogenic atrophy neuromuscular junction non-coding RNAs presymptomatic stages skeletal muscle SOD1G93A mouse model
下载PDF
Biology of Hippo signaling pathway:Skeletal muscle development and beyond
4
作者 Shuqi Qin Chaocheng Li +5 位作者 Haiyan Lu Yulong Feng Tao Guo Yusong Han Yongsheng Zhang Zhonglin Tang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期1825-1838,共14页
Global demand for farm animals and their meat products i.e.,pork,chicken and other livestock meat,is steadily incresing.With the ongoing life science research and the rapid development of biotechnology,it is a great o... Global demand for farm animals and their meat products i.e.,pork,chicken and other livestock meat,is steadily incresing.With the ongoing life science research and the rapid development of biotechnology,it is a great opportunity to develop advanced molecular breeding markers to efficiently improve animal meat production traits.Hippo is an important study subject because of its crucial role in the regulation of organ size.In recent years,with the increase of research on Hippo signaling pathway,the integrative application of multi-omics technologies such as genomics,transcriptomics,proteomics,and metabolomics can help promote the in-depth involvement of Hippo signaling pathway in skeletal muscle development research.The Hippo signaling pathway plays a key role in many biological events,including cell division,cell migration,cell proliferation,cell differentiation,cell apoptosis,as well as cell adhesion,cell polarity,homeostasis,maintenance of the face of mechanical overload,etc.Its influence on the development of skeletal muscle has important research value for enhancing the efficiency of animal husbandry production.In this study,we traced the origin of the Hippo pathway,comprehensively sorted out all the functional factors found in the pathway,deeply analyzed the molecular mechanism of its function,and classified it from a novel perspective based on its main functional domain and mode of action.Our aim is to systematically explore its regulatory role throughout skeletal muscle development.We specifically focus on the Hippo signaling pathway in embryonic stem cell development,muscle satellite cell fate determination,myogenesis,skeletal muscle meat production and organ size regulation,muscle hypertrophy and atrophy,muscle fiber formation and its transformation between different types,and cardiomyocytes.The roles in proliferation and regeneration are methodically summarized and analyzed comprehensively.The summary and prospect of the Hippo signaling pathway within this article will provide ideas for further improving meat production and muscle deposition and developing new molecular breeding technologies for livestock and poultry,which will be helpful for the development of animal molecular breeding. 展开更多
关键词 HIPPO skeletal muscle organ size MYOGENESIS C2C12 livestock animals
下载PDF
SWIR FluorescenceImaging In Vivo Monitoring and Evaluating Implanted M2 Macrophages in Skeletal Muscle Regeneration
5
作者 Mo Chen Yuzhou Chen +9 位作者 Sijia Feng Shixian Dong Luyi Sun Huizhu Li Fuchun Chen Nguyen Thi Kim Thanh Yunxia Li Shiyi Chen You Wang Jun Chen 《Engineering》 SCIE EI CAS CSCD 2024年第2期283-294,共12页
Skeletal muscle has a robust regeneration ability that is impaired by severe injury,disease,and aging.resulting in a decline in skeletal muscle function.Therefore,improving skeletal muscle regeneration is a key challe... Skeletal muscle has a robust regeneration ability that is impaired by severe injury,disease,and aging.resulting in a decline in skeletal muscle function.Therefore,improving skeletal muscle regeneration is a key challenge in treating skeletal muscle-related disorders.Owing to their significant role in tissue regeneration,implantation of M2 macrophages(M2MФ)has great potential for improving skeletal muscle regeneration.Here,we present a short-wave infrared(SWIR)fluorescence imaging technique to obtain more in vivo information for an in-depth evaluation of the skeletal muscle regeneration effect after M2MФtransplantation.SWIR fluorescence imaging was employed to track implanted M2MФin the injured skeletal muscle of mouse models.It is found that the implanted M2MФaccumulated at the injury site for two weeks.Then,SWIR fluorescence imaging of blood vessels showed that M2MФimplantation could improve the relative perfusion ratio on day 5(1.09±0.09 vs 0.85±0.05;p=0.01)and day 9(1.38±0.16 vs 0.95±0.03;p=0.01)post-injury,as well as augment the degree of skeletal muscle regencration on day 13 post-injury.Finally,multiple linear regression analyses determined that post-injury time and relative perfusion ratio could be used as predictive indicators to evaluate skeletal muscle regeneration.These results provide more in vivo details about M2MФin skeletal muscle regeneration and confirm that M2MФcould promote angiogenesis and improve the degree of skeletal muscle repair,which will guide the research and development of M2MФimplantation to improve skeletal muscle regeneration. 展开更多
关键词 In vivo Short-wave infrared skeletal muscle MACROPHAGE REGENERATION
下载PDF
Catalpa bignonioides extract improves exercise performance through regulation of growth and metabolism in skeletal muscles
6
作者 Hoibin Jeong Dong-joo Lee +11 位作者 Sung-Pil Kwon SeonJu Park Song-Rae Kim Seung Hyun Kim Jae-Il Park Deug-chan Lee Kyung-Min Choi WonWoo Lee Ji-Won Park Bohyun Yun Su-Hyeon Cho Kil-Nam Kim 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2024年第2期47-54,共8页
Objective:To evaluate the effects of Catalpa bignonioides fruit extract on the promotion of muscle growth and muscular capacity in vitro and in vivo.Methods:Cell viability was measured using the 3-(4,5-dimethylthiazol... Objective:To evaluate the effects of Catalpa bignonioides fruit extract on the promotion of muscle growth and muscular capacity in vitro and in vivo.Methods:Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.Cell proliferation was assessed using a 5-bromo-2’-deoxyuridine(BrdU)assay kit.Western blot analysis was performed to determine the protein expressions of related factors.The effects of Catalpa bignonioides extract were investigated in mice using the treadmill exhaustion test and whole-limb grip strength assay.Chemical composition analysis was performed using high-performance liquid chromatography(HPLC).Results:Catalpa bignonioides extract increased the proliferation of C2C12 mouse myoblasts by activating the Akt/mTOR signaling pathway.It also induced metabolic changes,increasing the number of mitochondria and glucose metabolism by phosphorylating adenosine monophosphate-activated protein kinase.In an in vivo study,the extract-treated mice showed improved motor abilities,such as muscular endurance and grip strength.Additionally,HPLC analysis showed that vanillic acid may be the main component of the Catalpa bignonioides extract that enhanced muscle strength.Conclusions:Catalpa bignonioides improves exercise performance through regulation of growth and metabolism in skeletal muscles,suggesting its potential as an effective natural agent for improving muscular strength. 展开更多
关键词 Catalpa bignonioides skeletal muscle Cell proliferation MITOCHONDRIA Energy metabolism C2C12
下载PDF
Low skeletal muscle mass and high visceral adiposity are associated with recurrence of acute cholecystitis after conservative management:A propensity score-matched cohort study
7
作者 Yudai Koya Michihiko Shibata +5 位作者 Yuki Maruno Yoshitaka Sakamoto Shinji Oe Koichiro Miyagawa Yuichi Honma Masaru Harada 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS CSCD 2024年第1期64-70,共7页
Background:Recurrent acute cholecystitis(RAC)can occur after non-surgical treatment for acute cholecystitis(AC),and can be more severe in comparison to the first episode of AC.Low skeletal muscle mass or adiposity hav... Background:Recurrent acute cholecystitis(RAC)can occur after non-surgical treatment for acute cholecystitis(AC),and can be more severe in comparison to the first episode of AC.Low skeletal muscle mass or adiposity have various effects in several diseases.We aimed to clarify the relationship between RAC and body parameters.Methods:Patients with AC who were treated at our hospital between January 2011 and March 2022 were enrolled.The psoas muscle mass and adipose tissue area at the third lumbar level were measured using computed tomography at the first episode of AC.The areas were divided by height to obtain the psoas muscle mass index(PMI)and subcutaneous/visceral adipose tissue index(SATI/VATI).According to median VATI,SATI and PMI values by sex,patients were divided into the high and low PMI groups.We performed propensity score matching to eliminate the baseline differences between the high PMI and low PMI groups and analyzed the cumulative incidence and predictors of RAC.Results:The entire cohort was divided into the high PMI(n=81)and low PMI(n=80)groups.In the propensity score-matched cohort there were 57 patients in each group.In Kaplan-Meier analysis,the low PMI group and the high VATI group had a significantly higher cumulative incidence of RAC than their counterparts(log-rank P=0.001 and 0.015,respectively).In a multivariate Cox regression analysis,the hazard ratios of low PMI and low VATI for RAC were 5.250(95%confidence interval 1.083-25.450,P=0.039)and 0.158(95%confidence interval:0.026-0.937,P=0.042),respectively.Conclusions:Low skeletal muscle mass and high visceral adiposity were independent risk factors for RAC. 展开更多
关键词 Acute cholecystitis Low skeletal muscle mass Recurrent acute cholecystitis SARCOPENIA Visceral adiposity
下载PDF
Temporal and spatial regulation of biomimetic vascularization in 3D-printed skeletal muscles
8
作者 Minxuan Jia Tingting Fan +3 位作者 Tan Jia Xin Liu Heng Liu Qi Gu 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第5期597-610,共14页
In the intricate skeletal muscle tissue,the symbiotic relationship between myotubes and their supporting vasculature is pivotal in delivering essential oxygen and nutrients.This study explored the complex interplay be... In the intricate skeletal muscle tissue,the symbiotic relationship between myotubes and their supporting vasculature is pivotal in delivering essential oxygen and nutrients.This study explored the complex interplay between skeletal muscle and endothelial cells in the vascularization ofmuscle tissue.By harnessing the capabilities of three-dimensional(3D)bioprinting and modeling,we developed a novel approach involving the co-construction of endothelial and muscle cells,followed by their subsequent differentiation.Our findings highlight the importance of the interaction dynamics between these two cell types.Notably,introducing endothelial cells during the advanced phases of muscle differentiation enhanced myotube assembly.Moreover,it stimulated the development of the vascular network,paving the way for the early stages of vascularized skeletal muscle development.The methodology proposed in this study indicates the potential for constructing large-scale,physiologically aligned skeletal muscle.Additionally,it highlights the need for exploring the delicate equilibrium and mutual interactions between muscle and endothelial cells.Based on the multicell-type interaction model,we can predict promising pathways for constructing even more intricate tissues or organs. 展开更多
关键词 skeletal muscle VASCULARIZATION 3D bioprinting Cell interaction
下载PDF
In vivo imaging and computational modeling of nonlinear shear waves in living skeletal muscles
9
作者 Yuxi Cao Chunpeng Chai 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第4期249-258,共10页
How the state of living muscles modulates the features of nonlinear elastic waves generated by external dynamic loads remains unclear because of the challenge of directly observing and modeling nonlinear elastic waves... How the state of living muscles modulates the features of nonlinear elastic waves generated by external dynamic loads remains unclear because of the challenge of directly observing and modeling nonlinear elastic waves in skeletal muscles in vivo,considering their active deformation behavior.Here,this important issue is addressed by combining experiments performed with an ultrafast ultrasound imaging system to track nonlinear shear waves(shear shock waves)in muscles in vivo and finite element analysis relying on a physically motivated constitutive model to study the effect of muscle activation level.Skeletal muscle was loaded with a deep muscle stimulator to generate shear shock waves(SSWs).The particle velocities,second and third harmonics,and group velocities of the SSWs in living muscles under both passive and active states were measured in vivo.Our experimental results reveal,for the first time,that muscle states have a pronounced effect on wave features;a low level of activation may facilitate the occurrence of both the second and third harmonics,whereas a high level of activation may inhibit the third harmonic.Finite element analysis was further carried out to quantitatively explore the effect of active muscle deformation behavior on the generation and propagation of SSWs.The simulation results at different muscle activation levels confirmed the experimental findings.The ability to reveal the effects of muscle state on the features of SSWs may be helpful in elucidating the unique dynamic deformation mechanism of living skeletal muscles,quantitatively characterizing diverse shock wave-based therapy instruments,and guiding the design of muscle-mimicking soft materials. 展开更多
关键词 Imaging nonlinear shear waves in living skeletal muscles Finite element modeling Ultrafast ultrasound imaging system In vivo measurement
下载PDF
Acupotomy ameliorates knee osteoarthritis-related collagen deposition and fibrosis in rabbit skeletal muscle through the TGF-β/Smad pathway
10
作者 Tingyao Hu Einar Khavaza +7 位作者 Chuxi Liang Longfei Xing Xilin Chen Yue Xu Weiwei Ma Farid Mokhtari Juan Lu Changqing Guo 《Journal of Traditional Chinese Medical Sciences》 CAS 2024年第3期376-385,共10页
Objective:To investigate the effects of acupotomy on skeletal muscle fibrosis and collagen deposition in a rabbit knee osteoarthritis(KOA)model.Methods: Rabbits(n=18)were randomly divided into control,KOA,and KOA+acup... Objective:To investigate the effects of acupotomy on skeletal muscle fibrosis and collagen deposition in a rabbit knee osteoarthritis(KOA)model.Methods: Rabbits(n=18)were randomly divided into control,KOA,and KOA+acupotomy(Apo)groups(n=6).The rabbits in the KOA and Apo groups were modeled using the modified Videman's method for 6 weeks.After modeling,the Apo group was subjected to acupotomy once a week for 3 weeks on the vastus medialis,vastus lateralis,rectus femoris,biceps femoris,and anserine bursa tendons around the knee.The behavior of all animals was recorded,rectus femoris tissue was obtained,and histomorphological changes were observed using Masson staining and transmission electron microscopy.The expression of transforming growth factor-β1(TGF-β1),Smad 3,Smad 7,fibrillar collagen types I(Col-I)and III(Col-III)was detected using Western blot and real-time polymerase chain reaction(RT-PCR).Results: Histological analysis revealed that acupotomy improved the microstructure and reduced the collagen volume fraction of rectus femoris,compared with the KOA group(P=.034).Acupotomy inhibited abnormal collagen deposition by modulating the expression of fibrosis-related proteins and mRNA,thus preventing skeletal muscle fibrosis.Western blot and RT-PCR analysis revealed that in the Apo group,Col-I,and Col-III protein levels were significantly lower than those in the KOA group(both P<.01),same as Col-I and Col-III mRNA levels(P=.0031;P=.0046).Compared with the KOA group,the protein levels of TGF-β1 and Smad 3 were significantly reduced(both P<.01),as were the mRNA levels of TGF-β1 and Smad 3(P=.0007;P=.0011).Conversely,the levels of protein and mRNA of Smad 7 were significantly higher than that in the KOA group(P<.01;P=.0271).Conclusion: Acupotomy could alleviate skeletal muscle fibrosis and delay KOA progress by inhibiting collagen deposition through the TGF-β/Smad pathway in the skeletal muscle of KOA rabbits. 展开更多
关键词 ACUPOTOMY Knee osteoarthritis skeletal muscle FIBROSIS Collagen deposition
下载PDF
Mitochondrial dysfunction in type 2 diabetes:A neglected path to skeletal muscle atrophy
11
作者 Jian-Jun Wu Hui-Min Xian +1 位作者 Da-Wei Yang Fan Yang 《World Journal of Orthopedics》 2024年第2期101-104,共4页
Over the course of several decades,robust research has firmly established the significance of mitochondrial pathology as a central contributor to the onset of skeletal muscle atrophy in individuals with diabetes.Howev... Over the course of several decades,robust research has firmly established the significance of mitochondrial pathology as a central contributor to the onset of skeletal muscle atrophy in individuals with diabetes.However,the specific intricacies governing this process remain elusive.Extensive evidence highlights that individuals with diabetes regularly confront the severe consequences of skeletal muscle degradation.Deciphering the sophisticated mechanisms at the core of this pathology requires a thorough and meticulous exploration into the nuanced factors intricately associated with mitochondrial dysfunction. 展开更多
关键词 Mfn-2 Oxidative stress Mitochondria metabolism skeletal muscle atrophy DIABETES
下载PDF
Automated body composition analysis system based on chest CT for evaluating content of muscle and adipose
12
作者 YANG Jie LIU Yanli +2 位作者 CHEN Xiaoyan CHEN Tianle LIU Qi 《中国医学影像技术》 CSCD 北大核心 2024年第8期1242-1248,共7页
Objective To establish a body composition analysis system based on chest CT,and to observe its value for evaluating content of chest muscle and adipose.Methods T7—T8 layer CT images of 108 pneumonia patients were col... Objective To establish a body composition analysis system based on chest CT,and to observe its value for evaluating content of chest muscle and adipose.Methods T7—T8 layer CT images of 108 pneumonia patients were collected(segmented dataset),and chest CT data of 984 patients were screened from the COVID 19-CT dataset(10 cases were randomly selected as whole test dataset,the remaining 974 cases were selected as layer selection dataset).T7—T8 layer was classified based on convolutional neural network(CNN)derived networks,including ResNet,ResNeXt,MobileNet,ShuffleNet,DenseNet,EfficientNet and ConvNeXt,then the accuracy,precision,recall and specificity were used to evaluate the performance of layer selection dataset.The skeletal muscle(SM),subcutaneous adipose tissue(SAT),intermuscular adipose tissue(IMAT)and visceral adipose tissue(VAT)were segmented using classical fully CNN(FCN)derived network,including FCN,SegNet,UNet,Attention UNet,UNET++,nnUNet,UNeXt and CMUNeXt,then Dice similarity coefficient(DSC),intersection over union(IoU)and 95 Hausdorff distance(HD)were used to evaluate the performance of segmented dataset.The automatic body composition analysis system was constructed based on optimal layer selection network and segmentation network,the mean absolute error(MAE),root mean squared error(RMSE)and standard deviation(SD)of MAE were used to evaluate the performance of automatic system for testing the whole test dataset.Results The accuracy,precision,recall and specificity of DenseNet network for automatically classifying T7—T8 layer from chest CT images was 95.06%,84.83%,92.27%and 95.78%,respectively,which were all higher than those of the other layer selection networks.In segmentation of SM,SAT,IMAT and overall,DSC and IoU of UNet++network were all higher,while 95HD of UNet++network were all lower than those of the other segmentation networks.Using DenseNet as the layer selection network and UNet++as the segmentation network,MAE of the automatic body composition analysis system for predicting SM,SAT,IMAT,VAT and MAE was 27.09,6.95,6.65 and 3.35 cm 2,respectively.Conclusion The body composition analysis system based on chest CT could be used to assess content of chest muscle and adipose.Among them,the UNet++network had better segmentation performance in adipose tissue than SM. 展开更多
关键词 body composition THORAX muscle skeletal adipose tissue deep learning tomography X-ray computed
下载PDF
Exploring the therapeutic effect of Xiaoyan d ecoction on lung cancer cachexia skeletal muscle atrophy based on L3-SMI
13
作者 Qing-Peng Jin Yun-Chao Zhang +4 位作者 Shi-Yu Wang Hao-Jian Zhang Shang-Heng Liu Wen-Hao Liu Na Lu 《Cancer Advances》 2024年第15期1-9,共9页
Background:Lung cancer cachexia has received widespread attention as one of the most common complications in patients with advanced lung cancer.As a multifactorial syndrome,lung cancer cachexia is characterized by a p... Background:Lung cancer cachexia has received widespread attention as one of the most common complications in patients with advanced lung cancer.As a multifactorial syndrome,lung cancer cachexia is characterized by a persistent decline in muscle mass that cannot be reversed by conventional nutrition Xiaoyan d ecoction can promote appetite and improve skeletal muscle mass in patients with lung cancer cachexia,while the third lumbar skeletal muscle index(L3-SMI)is able to determine whole-body skeletal muscle mass.To analyze the relationship between L3-SMI and hematological indexes and lung cancer cachexia,and to study the clinical efficacy of Xiaoyan decoction on skeletal muscle atrophy in lung cancer cachexia patients,with the aim of providing a reference basis for the early diagnosis and treatment of lung cancer cachexia patients and skeletal muscle atrophy.Methods:148 patients who were diagnosed with lung cancer in the Department of Oncology of the First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine from January 2020 to December 2022 were included,and were divided into cachexia and non-cachexia groups according to the diagnostic criteria of cachexia,and analyzed the differences of hematological indexes and L3-SMI between cachexia patients and non-cachexia patients.And the patients with cachexia were divided into control group and treatment group,analyzed and compared the changes of body mass index(BMI),L 3-SMI,Karnofsky functional status score,albumin and other hematological indexes of the two groups before and after the treatment,and evaluated the safety of the Xiaoyan decoction in the treatment of cachexia.Results:A total of 148 lung cancer patients were included in this study,including 67 patients in the cachexia group and 81 patients in the non-cachexia group.According to the pre-treatment statistical analysis,the BMI of patients in the cachexia group was lower than that of patients in the non-cachexia group(P<0.05);among the biochemical function indexes,the proportions of creatinine(P<0.05),total protein(P<0.05),The levels of albumin in the cachexia group were significantly lower(P<0.05)compared to the non-cachexia group;in the cachexia group,both males and females had lower L3-SMIs than in the non-cachexia group(P<0.05).A total of 62 cases of lung cancer cachexia were studied,30 cases in the control group and 32 cases in the treatment group,according to statistical analysis,BMI was significantly different before and after treatment(P<0.05);L3-SMI was significantly different in the treatment group before and after treatment(P<0.05);Karnofsky significantly differed in the treatment group before and after treatment(P<0.05);and there was a significant difference in albumin before and after(P<0.05).Conclusion:Cachexia patients had significantly lower third lumbar skeletal muscle mass than non-cachexia patients,according to this study;Xiaoyan decoction was able to improve skeletal muscle mass,nutritional status as well as functional status of patients with cachexia in lung cancer,among others. 展开更多
关键词 lung cancer cachexia Xiaoyan decoction skeletal muscle index network pharmacology
下载PDF
Impact of noninvasive positive pressure ventilation on the gene expression of ubiquitin system of skeletal muscle in patients with acute exacerbation of chronic obstructive pulmonary disease
14
作者 Hui Wang Jingping Yang +1 位作者 Xiyuan Xu Tieying Tian 《Discussion of Clinical Cases》 2016年第4期1-5,共5页
Objective:To investigate the change and relativity of noninvasive positive pressure ventilation(NIPPV)on the gene expression of ubiquitin system of skeletal muscle in patient with acute exacerbation of chronic obstruc... Objective:To investigate the change and relativity of noninvasive positive pressure ventilation(NIPPV)on the gene expression of ubiquitin system of skeletal muscle in patient with acute exacerbation of chronic obstructive pulmonary disease(AECOPD).Methods:80 patients with AECOPD were divided into two groups based on whether the NIPPV treatment was given or not,38 cases in the study group and 42 in the control group.The blood gas analysis and pulmonary function were monitored and recorded before and 14 days after treatment.A skeletal muscle biopsy was performed 14 days after therapy.The mRNA expression of ribosomal protein S21(RPS21)and ubiquitin in skeletal muscle cell were measured by RT-PCR.Results:After 14 days treatment,the levels of PaCO_(2),PaO_(2),PH and FEV_(1)% in the NIPPV group improved much better than in the control group(p<.05).The gene expression of RPS21 and ubiquitin was obviously lower in the study group than in the control group(p<.05).The level of RPS21 was negatively related with PaO_(2),PH and FEV1%,and the level of ubiquitin was negatively related with PaO_(2) and FEV1%,but positively correlated with PaCO_(2).The area under the ROC curves of RPS21,ubiquitin,PaCO_(2) and FEV_(1)% were 0.771,0.885,0.821 and 0.734 respectively in the study group.The cut-off points were 103.978,8.128,45.350 and 51.350 respectively.The sensitivity evaluation of acid poisoning was 90.9%,and the specificities for each were 75%,75%,50% and 50%.Conclusions:NIPPV is effective for AECOPD patients through the gene expression of ubiquitin system of skeletal muscle. 展开更多
关键词 Noninvasive positive pressure ventilation Acute exacerbation of chronic obstructive pulmonary disease skeletal muscle Gene expression
下载PDF
Effect of berberine on glucolipid metabolization in diabetic skeletal muscle and its mechanism 被引量:1
15
作者 周吉银 周世文 《Journal of Chinese Pharmaceutical Sciences》 CAS 2007年第4期300-306,共7页
Aim To investigate the effect of berberine on damaged morphology and glucolipid metabolization in skeletal muscle of diabetic rat and the relationship between peroxisome proliferator-activated receptor (PPARs) α/γ... Aim To investigate the effect of berberine on damaged morphology and glucolipid metabolization in skeletal muscle of diabetic rat and the relationship between peroxisome proliferator-activated receptor (PPARs) α/γ/δ protein expression. Methods Type 2 diabetes mellitus rats were induced by an injection of 35 mg.kg^-1 streptozotocin (STZ) and a high-carbohydrate/ high-fat diet for 16 weeks. From week 17 to 32, diabetic rats were given low-, middle-, high-dose berberine (75, 150, 300 mg.kg^-1), fenofibrate (100 mg.kg^-1) and rosiglitazone (4 mg.kg^-1) by oral administration, respectively. The skeletal muscle structure was observed with hematoxylin-eosin (HE) staining, glycogen and triglyceride contents were measured by spectrophotometry and PPAR α/γ/δ protein expressions were detected by immunohistochemistry. Results Fiber distribution remained normal in skeletal muscles of all the groups, middle-, high-dose berberine partly improved diabetic fibre atrophy, increased glycogen and decreased triglyceride levels in diabetic muscle (P〈 0.01). Middle-, high-dose berberine and rosiglitazone all significantly reduced PPARy protein level in diabetic skeletal muscle (P 〈 0.01); middle-, high-dose berberine and fenofibrate strikingly increased both PPARu and PPAR8 expression (P〈 0.01). Conclusion Berberine modulates PPAR α/γ/δ protein expression in diabetic skeletal muscle which may contribute to ameliorate fibre damage and glucolipid metabolization. 展开更多
关键词 BERBERINE PPAR α/γ/δ skeletal muscle Glucolipid metabolization
下载PDF
Biological Characteristics of Skeletal Muscle Satellite Cells and Its Application Prospects in Muscle Trauma Repair 被引量:1
16
作者 元虹懿 袁子奥 +1 位作者 支晓亮 张明海 《Agricultural Science & Technology》 CAS 2016年第10期2349-2353,共5页
As the only source of stem cells, satellite cells play and extraordinary role in the remediation process of skeletal muscle after injury. This paper overviewed the biological characteristic of skeletal muscle satellit... As the only source of stem cells, satellite cells play and extraordinary role in the remediation process of skeletal muscle after injury. This paper overviewed the biological characteristic of skeletal muscle satellite cells and its role in repairing muscle injury, and put forward the prospects of its application in muscle trauma repair. 展开更多
关键词 Satellite cell skeletal muscle Biological Characteristics REPAIR
下载PDF
Apoptosis in skeletal muscle and its relevance to atrophy 被引量:12
17
作者 Esther E Dupont-Versteegden 《World Journal of Gastroenterology》 SCIE CAS CSCD 2006年第46期7463-7466,共4页
Apoptosis is necessary for maintaining the integrity of proliferative tissues, such as epithelial cells of the gastrointestinal system. The role of apoptosis in post mitotic tissues, such as skeletal muscle, is less w... Apoptosis is necessary for maintaining the integrity of proliferative tissues, such as epithelial cells of the gastrointestinal system. The role of apoptosis in post mitotic tissues, such as skeletal muscle, is less well defined. Apoptosis during muscle atrophy occurs in both myonuclei and other muscle cell types. Apoptosis of myonuclei likely contributes to the loss of muscle mass, but the mechanisms underlying this process are largely unknown. Caspase-dependent as well as -independent pathways have been implicated and the mode by which atrophy is induced likely determines the apoptotic mechanisms that are utilized. It remains to be determined whether a decrease in apoptosis will alleviate atrophy and distinct research strategies may be required for different causes of skeletal muscle loss. 展开更多
关键词 skeletal muscle APOPTOSIS Disuse atrophy AGING
下载PDF
Non-alcoholic fatty liver disease connections with fat-free tissues: A focus on bone and skeletal muscle 被引量:9
18
作者 Eleonora Poggiogalle Lorenzo Maria Donini +2 位作者 Andrea Lenzi Claudio Chiesa Lucia Pacifico 《World Journal of Gastroenterology》 SCIE CAS 2017年第10期1747-1757,共11页
The estimates of global incidence and prevalence of non-alcoholic fatty liver disease(NAFLD) are worrisome, due to the parallel burden of obesity and its metabolic complications. Indeed, excess adiposity and insulin r... The estimates of global incidence and prevalence of non-alcoholic fatty liver disease(NAFLD) are worrisome, due to the parallel burden of obesity and its metabolic complications. Indeed, excess adiposity and insulin resistance represent two of the major risk factors for NAFLD; interestingly, in the last years a growing body of evidence tended to support a novel mechanistic perspective, in which the liver is at the center of a complex interplay involving organs and systems, other than adipose tissue and glucose homeostasis. Bone and the skeletal muscle are fat- free tissues which appeared to be independently associated with NAFLD in several cross-sectional studies. The deterioration of bone mineral density and lean body mass, leading to osteoporosis and sarcopenia, respectively, are age-related processes. The prevalence of NAFLD also increases with age. Beyond physiological aging, the three conditions share some common underlying mechanisms, and their elucidations could be of paramount importance to design more effective treatment strategies for the management of NAFLD. In this review, we provide an overview on epidemiological data as well as on potential contributors to the connections of NAFLD with bone and skeletal muscle. 展开更多
关键词 Non-alcoholic fatty liver disease BONE skeletal muscle OSTEOPOROSIS SARCOPENIA
下载PDF
Low skeletal muscle mass is associated with non-alcoholic fatty liver disease in Korean adults: the Fifth Korea National Health and Nutrition Examination Survey 被引量:12
19
作者 hee yeon kim chang wook kim +4 位作者 chung-hwa park jong young choi kyungdo han anwar t merchant yong-moon park 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS CSCD 2016年第1期39-47,共9页
BACKGROUND: Sarcopenia and non-alcoholic fatty liver dis- ease (NAFLD) share similar pathophysiological mechanisms, and the relationship between sarcopenia and NAFLD has been recently investigated. The study invest... BACKGROUND: Sarcopenia and non-alcoholic fatty liver dis- ease (NAFLD) share similar pathophysiological mechanisms, and the relationship between sarcopenia and NAFLD has been recently investigated. The study investigated whether low skel- etal muscle mass is differentially associated with NAFLD by gender in Korean adults. METHODS: We conducted a cross-sectional analysis of the data from the Fifth Korea National Health and Nutrition Examination Survey. The skeletal muscle index (SMI) was obtained by the appendicular skeletal muscle mass divided by the weight. NAFLD was defined as a fatty liver index (FLI) 〉60 in the absence of other chronic liver disease. RESULTS: Among the included subjects, 18.3% (SE: 1.4%) in men and 7.0% (SE: 0.7%) in women were classified as having FLI-defined NAFLD. Most of the risk factors for FLI-defined NAFLD showed a significant negative correlation with the SMI in both genders. Multiple logistic regression analysis showed that low SMI was associated with FLI-defined NAFLD, inde- pendent of other metabolic and lifestyle parameters in both genders [males: odds ratio (OR)=1.35; 95% confidence inter- val (CI): 1.17-1.54; females: OR=1.36; 95% CI: 1.18-1.55]. The magnitude of the association between FLI-defined NAFLD and low SMI was higher in middle aged to elderly males (OR-1.50; 95% CI: 1.22-1.84) than in males less than 45 years of age (OR=1.25; 95% CI: 1.02-1.52) and in premenopausal females (OR=l.50; 95% CI: 1.12-2.03) than in postmenopausal females (OR-1.36; 95% CI: 1.20-1.54).CONCLUSIONS: Low SMI is associated with the risk of FLI- defined NAFLD independent of other well-known metabolic risk factors in both genders. This association may differ ac- cording to age group or menopausal status. Further studies are warranted to confirm this relationship. 展开更多
关键词 Korea National Health and Nutrition Examination Survey non-alcoholic fatty liver disease SARCOPENIA skeletal muscle
下载PDF
GRADING OF RABBIT SKELETAL MUSCLE TRAUMA BY DIFFUSION TENSOR IMAGING AND TRACTOGRAPHY ON MAGNETIC RESONANCE IMAGING 被引量:10
20
作者 Hui Zeng Jun-hui Zheng +1 位作者 Jin-e Zhang Yan-hui Liu 《Chinese Medical Sciences Journal》 CAS CSCD 2006年第4期276-280,共5页
Objective To distinguish the edema, injury, or rupture in the traumatic skeletal muscle fiber in vivo using diffusion tensor imaging (DTI) and tractography on magnetic resonance imaging (MRI). Methods The skeleta... Objective To distinguish the edema, injury, or rupture in the traumatic skeletal muscle fiber in vivo using diffusion tensor imaging (DTI) and tractography on magnetic resonance imaging (MRI). Methods The skeletal muscle trauma models were made in 4 rabbits ( eight hindlimbs) by iron discus ( weight 1. 0 kg, diameter 6 cm) falling down vertically from 45 cm height to rabbits' thighs. Conventional sequences and two-dimensional (2D) diffusion-weighted (DW) spin-echo (SE) echo planar imaging (EPI) sequence with fat suppression ( b = 600 s/mm^2 ) were performed on 1.5T MRI scanner. The grading of edema, injury, and fiber rupture in the damaged muscle were made according to their histopathological views, which was consistent with the images. The mean apparent diffusion coefficient (ADC) values and fractional anisotropy (FA) values were measured from the region of interests (ROIs) of all groups on 2D DW images used for tractography. Analysis of variance test was performed to analyze all data. Results ADC values of the areas in normal muscle, edema muscle, injury muscle, and ruptured muscle were (6. 12±1.34 ) × 10^-3, ( 6.38±1.30 ) × 10^-3, ( 8.06±0. 97 ) × 10^-3, and ( 9. 57±0. 93 ) × 10^-3 mm^2/s, respectively. There was significant difference among groups (P 〈0. 001 ), but no difference between edema muscle and normal muscle group (P 〉0. 05). The FA values of normal muscle, edema muscle, injury muscle, and ruptured muscle were 0. 42±0. 12, 0. 36±0. 12, 0. 26±0. 09, 0. 12±0. 08, respectively, with a significant difference among groups ( P 〈 0. 001 ). In the edema muscle, the tracking cross-fiber could be seen but it decreased slightly. In the injury muscle, the tracking fiber decreased markedly. In the ruptured muscle, the transverse-orientation tracking fiber vanished, yet some interrupted longitudinal-orientation tracking fiber could be found. Conclsion The edema, injury, and rupture of muscle fiber in rabbit damaged skeletal muscle can be verified according to the ADC and the FA on DTI and tractography. 展开更多
关键词 traumatic skeletal muscle grade diffusion tensor imaging TRACTOGRAPHY
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部