期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
Game-changing insights on vertebral skeletal stem cells in bone metastasis and therapeutic horizons
1
作者 QIUQIANG CHEN XIAOLEI ZHAO WENXUE MA 《Oncology Research》 SCIE 2024年第1期95-98,共4页
Greenblatt and his team have unveiled vertebral skeletal stem cells(vSSCs)as a critical player in the landscape of bone metastasis.This commentary delves into the transformative discoveries surrounding vSSCs,emphasizi... Greenblatt and his team have unveiled vertebral skeletal stem cells(vSSCs)as a critical player in the landscape of bone metastasis.This commentary delves into the transformative discoveries surrounding vSSCs,emphasizing their distinct role in bone metastasis compared to other stem cell lineages.We illuminate the unique properties and functions of vSSCs,which may account for the elevated susceptibility of vertebral bones to metastatic invasion.Furthermore,we explore the exciting therapeutic horizons opened by this newfound understanding.These include potential interventions targeting vSSCs,modulation of associated signaling pathways,and broader implications for the treatment and management of bone metastasis.By shedding light on these game-changing insights,we hope to pave the way for novel strategies that could revolutionize the prognosis and treatment landscape for cancer patients with metastatic bone disease. 展开更多
关键词 Vertebral skeletal stem cells(vSSCs) Stem cell research Metastasis Breast prostate and lung cancers Spinal metastasis Matthew Greenblatt Genetic expressions
下载PDF
Current and future uses of skeletal stem cells for bone regeneration 被引量:6
2
作者 Guo-Ping Xu Xiang-Feng Zhang +1 位作者 Lu Sun Er-Man Chen 《World Journal of Stem Cells》 SCIE CAS 2020年第5期339-350,共12页
The postnatal skeleton undergoes growth,modeling,and remodeling.The human skeleton is a composite of diverse tissue types,including bone,cartilage,fat,fibroblasts,nerves,blood vessels,and hematopoietic cells.Fracture ... The postnatal skeleton undergoes growth,modeling,and remodeling.The human skeleton is a composite of diverse tissue types,including bone,cartilage,fat,fibroblasts,nerves,blood vessels,and hematopoietic cells.Fracture nonunion and bone defects are among the most challenging clinical problems in orthopedic trauma.The incidence of nonunion or bone defects following fractures is increasing.Stem and progenitor cells mediate homeostasis and regeneration in postnatal tissue,including bone tissue.As multipotent stem cells,skeletal stem cells(SSCs)have a strong effect on the growth,differentiation,and repair of bone regeneration.In recent years,a number of important studies have characterized the hierarchy,differential potential,and bone formation of SSCs.Here,we describe studies on and applications of SSCs and/or mesenchymal stem cells for bone regeneration. 展开更多
关键词 skeletal stem cell Mesenchymal stem cell Bone regeneration PERIOSTEUM Bone marrow SKELETON
下载PDF
Effects of Soybean Isoflavones on In vitro Antioxidative Capacity of Satellite Cells of Porcine Skeletal Muscles 被引量:6
3
作者 JIANG Zong-yong ZHOU Gui-lian LIN Ying-cai JIANG Shou-qun ZHENG Chun-tian HAN Li-ming CHEN Fang 《Agricultural Sciences in China》 CAS CSCD 2011年第1期120-125,共6页
A synthetic isoflavone (ISO-S) or genistein was added in culture medium at different concentrations (0, 10, 20, 30, 40, and 80 p.mol L^-1) to investigate the effects of soybean isoflavones on antioxidative capacit... A synthetic isoflavone (ISO-S) or genistein was added in culture medium at different concentrations (0, 10, 20, 30, 40, and 80 p.mol L^-1) to investigate the effects of soybean isoflavones on antioxidative capacity of porcine skeletal muscle satellite cells. After 48 h incubation, the suspension was cryopreserved for the determination of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) activities, and malondialdehyde (MDA) content. The mRNA levels of SOD, CAT, and GSH-Px gene in cells were detected with Taqman fluorescent probe method. The results showed that the content of MDA and the activities and the mRNA levels of SOD of porcine skeletal muscle satellite cells were influenced by supplemented soybean isoflavone (P〈0.05) when adding 10-80 μmol L^-1 ISO-S or genistein in the medium. The MDA contents, SOD and CAT activities and their mRNA expression levels of porcine skeletal muscle cells responded quadratically (P〈 0.05) as the level of ISO-S or genistein increased. Pre-incubation of porcine skeletal muscle satellite cells with ISO-S or genistein at 10-40 pmol L-1 elevated the activities and the mRNA expression levels of SOD and CAT in cells concurrently and decreased the cellular content of MDA (P〈 0.05). The results indicated that pre-incubation of ISO-S or genistein at 10- 40μmol L^-1 could improve the antioxidative capacity of porcine skeletal muscle satellite cells. 展开更多
关键词 soybean isoflavone antioxidative capacity superoxide dismutase CATALASE skeletal muscle satellite cells
下载PDF
Skeletal Muscle-derived Stem Cells Exhibit Cardiocyte Competences 被引量:1
4
作者 李进 付德生 +3 位作者 洪光祥 陈江海 康皓 陈振兵 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2009年第6期741-744,共4页
Adult stem cells from skeletal muscle cells were induced to differentiate into cardiocytes to see if stem cells from another different but histologically-comparable tissues can differentiate to the target cells. Skele... Adult stem cells from skeletal muscle cells were induced to differentiate into cardiocytes to see if stem cells from another different but histologically-comparable tissues can differentiate to the target cells. Skeletal muscles-derived stem cells (MDSCs) were isolated from adult skeleton muscle tissues by differential adhesion, and immunocytochemically identified by using Sca-1. In order to induce the proliferation but not differentiation of MDSCs, the cells were cultured in Dulbecco’s modified Eagle’s medium/F12 (DMEM/F12) supplemented with 1:50 B27, 20 ng/mL basic fibroblast growth factor (bFGF), 20 ng/mL epidermal growth factor (EGF) in a suspension for 6 days. Then these stem cells were treated with 5 μmol/L 5-azacytidine for 24 h in an adherence culture. The characteristics of induced cells were examined by immunocytochemistry, quantitative real time RT-PCR and morphological observation of cell phenotype. Our results showed that the appearance of some cells gradually changed from spindle-shape into polygonal or short-column-shape. Some of these post-treated cells could contract spontaneously and rhythmically. The expression of GATA-4 and cTnT was increased 1 and 2 week(s) after the treatment. And about 16.6% of post-treated cells were cTnT-positive. Therefore, we are led to conclude that skeletal muscle-derived stem cells could differentiate into cardiocyte-like cells, which exhibited some characteristics of cardiocytes. 展开更多
关键词 skeletal muscle-derived stem cells TRANS-DIFFERENTIATION cardiocytes
下载PDF
Protective Effect of ATP on Skeletal Muscle Satellite Cells Damaged by H_2O_2
5
作者 费飞 朱道立 +2 位作者 陶丽君 黄宝珠 张红红 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2015年第1期76-81,共6页
This study investigated the protective effect of ATP on skeletal muscle satellite cells damaged by H2O2 in neonatal rats and the possible mechanism. The skeletal muscle satellite cells were randomly divided into four ... This study investigated the protective effect of ATP on skeletal muscle satellite cells damaged by H2O2 in neonatal rats and the possible mechanism. The skeletal muscle satellite cells were randomly divided into four groups: normal group, model group(cells treated with 0.1 mmol/L H2O2 for 50 s), protection group(cells treated with 16, 8, 4, 2, 1, 0.5, or 0.25 mmol/L ATP for 24 h, and then with 0.1 mmol/L H2O2 for 50 s), proliferation group(cells treated with 16, 8, 4, 2, 1, 0.5, or 0.25 mmol/L ATP for 24 h). MTT assay, FITC+PI+DAPI fluorescent staining, Giemsa staining and immunofluorescence were performed to examine cell viability and apoptosis, and apoptosis-related proteins. The results showed that the survival rate of skeletal muscle satellite cells was decreased and the apoptosis rate was increased after H2O2 treatment(P〈0.01). Different doses of ATP had different effects on skeletal muscle satellite cells damaged by H2O2: the survival rate of muscle satellite cells treated with ATP at 4, 2, or 1 mmol/L was increased. The protective effect was most profound on cells treated with 2 mmol/L ATP. Immunofluorescence showed that ATP could increase the number of Bcl-2-positive cells(P〈0.01) and decrease the number of the Bax-positive cells(P〈0.01). It was concluded that ATP could protect skeletal muscle satellite cells against H2O2 damage in neonatal rats, which may be attributed to the up-regulation of the expression of Bcl-2 and down-regulation of Bax, resulting in the suppression of apoptosis. 展开更多
关键词 adenosine triphosphate hydrogen peroxide DAMAGE protection skeletal muscle satellite cells BCL-2 BAX
下载PDF
Pickering emulsion transport in skeletal muscle tissue:A dissipative particle dynamics simulation approach
6
作者 Xuwei Liu Wei Chen +3 位作者 Yufei Xia Guanghui Ma Reiji Noda Wei Ge 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期65-75,共11页
Lymph node targeting is a commonly used strategy for particulate vaccines,particularly for Pickering emulsions.However,extensive research on the internal delivery mechanisms of these emulsions,especially the complex i... Lymph node targeting is a commonly used strategy for particulate vaccines,particularly for Pickering emulsions.However,extensive research on the internal delivery mechanisms of these emulsions,especially the complex intercellular interactions of deformable Pickering emulsions,has been surprisingly sparse.This gap in knowledge holds significant potential for enhancing vaccine efficacy.This study aims to address this by summarizing the process of lymph-node-targeting transport and introducing a dissipative particle dynamics simulation method to evaluate the dynamic processes within cell tissue.The transport of Pickering emulsions in skeletal muscle tissue is specifically investigated as a case study.Various factors impacting the transport process are explored,including local cellular tissue environmental factors and the properties of the Pickering emulsion itself.The simulation results primarily demonstrate that an increase in radial repulsive interaction between emulsion particles can decrease the transport efficiency.Additionally,larger intercellular gaps also diminish the transport efficiency of emulsion droplet particles due to the increased motion complexity within the intricate transport space compared to a single channel.This study sheds light on the nuanced interplay between engineered and biological systems influencing the transport dynamics of Pickering emulsions.Such insights hold valuable potential for optimizing transport processes in practical biomedical applications such as drug delivery.Importantly,the desired transport efficiency varies depending on the specific application.For instance,while a more rapid transport might be crucial for lymph-node-targeted drug delivery,certain applications requiring a slower release of active components could benefit from the reduced transport efficiency observed with increased particle repulsion or larger intercellular gaps. 展开更多
关键词 Pickering emulsion skeletal muscular cells Transport phenomena Dissipative particle dynamics Drug delivery
下载PDF
Muscle satellite cells:one of the important factors in the occurrence and development of sarcopenia
7
作者 Peng Zhang Wen-Hui Jiang +2 位作者 Juan-Juan Gao Wen-Xia Yu Shu-Quan Lv 《Life Research》 2024年第2期28-31,共4页
Sarcopenia,or muscle loss,has been one of the hot topics in the medical field in recent years.Due to limited attention and effective treatments for sarcopenia in the past,many patients,especially the elderly,suffered ... Sarcopenia,or muscle loss,has been one of the hot topics in the medical field in recent years.Due to limited attention and effective treatments for sarcopenia in the past,many patients,especially the elderly,suffered irreversible damage to their motor function caused by sarcopenia.However,recent scientific studies have found that the occurrence and development of sarcopenia are closely related to the function and quantity of muscle satellite cells.This article briefly discusses the relationship between muscle satellite cells and sarcopenia. 展开更多
关键词 SARCOPENIA muscle satellite cells skeletal muscle cells
下载PDF
Current evidence on potential of adipose derived stem cells to enhance bone regeneration and future projection 被引量:3
8
作者 Quang Le Vedavathi Madhu +4 位作者 Joseph M Hart Charles R Farber Eli R Zunder Abhijit S Dighe Quanjun Cui 《World Journal of Stem Cells》 SCIE 2021年第9期1248-1277,共30页
Injuries to the postnatal skeleton are naturally repaired through successive stepsinvolving specific cell types in a process collectively termed “bone regeneration”.Although complex, bone regeneration occurs through... Injuries to the postnatal skeleton are naturally repaired through successive stepsinvolving specific cell types in a process collectively termed “bone regeneration”.Although complex, bone regeneration occurs through a series of well-orchestratedstages wherein endogenous bone stem cells play a central role. In most situations,bone regeneration is successful;however, there are instances when it fails andcreates non-healing injuries or fracture nonunion requiring surgical or therapeuticinterventions. Transplantation of adult or mesenchymal stem cells (MSCs) definedby the International Society for Cell and Gene Therapy (ISCT) as CD105+-CD90+CD73+CD45-CD34-CD14orCD11b-CD79αorCD19-HLA-DR- is beinginvestigated as an attractive therapy for bone regeneration throughout the world.MSCs isolated from adipose tissue, adipose-derived stem cells (ADSCs), aregaining increasing attention since this is the most abundant source of adult stemcells and the isolation process for ADSCs is straightforward. Currently, there isnot a single Food and Drug Administration (FDA) approved ADSCs product forbone regeneration. Although the safety of ADSCs is established from their usagein numerous clinical trials, the bone-forming potential of ADSCs and MSCs, ingeneral, is highly controversial. Growing evidence suggests that the ISCT definedphenotype may not represent bona fide osteoprogenitors. Transplantation of bothADSCs and the CD105- sub-population of ADSCs has been reported to induce bone regeneration. Most notably, cells expressing other markers such as CD146,AlphaV, CD200, PDPN, CD164, CXCR4, and PDGFRα have been shown torepresent osteogenic sub-population within ADSCs. Amongst other strategies toimprove the bone-forming ability of ADSCs, modulation of VEGF, TGF-β1 andBMP signaling pathways of ADSCs has shown promising results. The U.S. FDAreveals that 73% of Investigational New Drug applications for stem cell-basedproducts rely on CD105 expression as the “positive” marker for adult stem cells.A concerted effort involving the scientific community, clinicians, industries, andregulatory bodies to redefine ADSCs using powerful selection markers andstrategies to modulate signaling pathways of ADSCs will speed up thetherapeutic use of ADSCs for bone regeneration. 展开更多
关键词 Mesenchymal stem cells Adipose-derived stem cells Endogenous stem cells skeletal stem cells Bone regeneration
下载PDF
SHP2 regulates skeletal cell fate by modifying SOX9 expression and transcriptional activity 被引量:3
9
作者 Chunlin Zuo Lijun Wang +11 位作者 Raghavendra M.Kamalesh Margot E.Bowen Douglas C.Moore Mark S.Dooner Anthony M.Reginato Qian Wu Christoph Schorl Yueming Song Matthew L.Warman Benjamin G.Neel Michael G.Ehrlich Wentian Yang 《Bone Research》 CAS CSCD 2018年第2期132-144,共13页
Chondrocytes and osteoblasts differentiate from a common mesenchymal precursor, the osteochondroprogenitor(OCP), and help build the vertebrate skeleton. The signaling pathways that control lineage commitment for OCP... Chondrocytes and osteoblasts differentiate from a common mesenchymal precursor, the osteochondroprogenitor(OCP), and help build the vertebrate skeleton. The signaling pathways that control lineage commitment for OCPs are incompletely understood. We asked whether the ubiquitously expressed protein-tyrosine phosphatase SHP2(encoded by Ptpn11) affects skeletal lineage commitment by conditionally deleting Ptpn11 in mouse limb and head mesenchyme using "Cre-lox P"-mediated gene excision.SHP2-deficient mice have increased cartilage mass and deficient ossification, suggesting that SHP2-deficient OCPs become chondrocytes and not osteoblasts. Consistent with these observations, the expression of the master chondrogenic transcription factor SOX9 and its target genes Acan, Col2a1, and Col10a1 were increased in SHP2-deficient chondrocytes, as revealed by gene expression arrays, q RT-PCR, in situ hybridization, and immunostaining. Mechanistic studies demonstrate that SHP2 regulates OCP fate determination via the phosphorylation and SUMOylation of SOX9, mediated at least in part via the PKA signaling pathway. Our data indicate that SHP2 is critical for skeletal cell lineage differentiation and could thus be a pharmacologic target for bone and cartilage regeneration. 展开更多
关键词 SHP2 regulates skeletal cell modifying SOX9 expression transcriptional activity SOX
下载PDF
Time-dependent gene expression analysis after mouse skeletal muscle contusion 被引量:11
10
作者 Weihua Xiao Yu Liu +4 位作者 Beibei Luo Linlin Zhao Xiaoguang Liu Zhigang Zeng Peijie Chen 《Journal of Sport and Health Science》 SCIE 2016年第1期101-108,共8页
Background:Though the mechanisms of skeletal muscle regeneration are deeply understood,those involved in muscle contusion,one of the most common muscle injuries in sports medicine clinics,are not.The objective of this... Background:Though the mechanisms of skeletal muscle regeneration are deeply understood,those involved in muscle contusion,one of the most common muscle injuries in sports medicine clinics,are not.The objective of this study is to explore the mechanisms involved in muscle regeneration after contusion injury.Methods:In this study,a total of 72 mice were used.Eight of them were randomly chosen for the control group,while the rest were subjected to muscle contusion.Subsequently,their gastrocnemius muscles were harvested at different time points.The changes in muscle morphology were assessed by hematoxylin and eosin(HE) stain.In addition,the gene expression was analyzed by real-time polymerase chain reaction.Results:The data showed that the expression of many genes,i.e.,specific markers of immune cells and satellite cells,regulatory factors for muscle regeneration,cytokines,and chemokines,increased in the early stages of recovery,especially in the first 3 days.Furthermore,there were strict rules in the expression of these genes.However,almost all the genes returned to normal at 14 days post-injury.Conclusion:The sequence of immune cells invaded after muscle contusion was neutrophils,M1 macrophages and M2 macrophages.Some CC(CCL2,CCL3,and CCL4) and CXC(CXCL10) chemokines may be involved in the chemotaxis of these immune cells.HGF may be the primary factor to activate the satellite cells after muscle contusion.Moreover,2 weeks are needed to recover when acute contusion happens as used in this study. 展开更多
关键词 Chemokines Contusion Cytokines Gene Macrophages Satellite cells skeletal muscle
下载PDF
Impact of Bovine Skeletal Muscle Satellite Cell Differentiation by Small Interfering RNA Targeting Myogenin Gene 被引量:2
11
作者 Liu Cong-cong Zhao Dan-dan +5 位作者 Tong Hui-li Ye Feng Yang Yue Li Shu-feng Jia Ming-yu Yan Yun-qin 《Journal of Northeast Agricultural University(English Edition)》 CAS 2013年第2期32-37,F0003,共7页
To examine the effect of myogenin gene on the differentiation of bovine skeletal muscle satellite cell, we constructed small interfering RNA plasmid vector to obtain myogenin knockdown bovine skeletal muscle cells, th... To examine the effect of myogenin gene on the differentiation of bovine skeletal muscle satellite cell, we constructed small interfering RNA plasmid vector to obtain myogenin knockdown bovine skeletal muscle cells, then used cell transfection, real time RCR and Western Blot to detect the influence of myogenin to cell differentiation. Results showed that the knockdown of myogenin significantly decreased its expression and other muscle-specific genes. Compared to the control, it could differentiate into few myotubes when challenged by low serum in the medium. These findings provided an important theoretical basis for further explore of the genetic mechanism in adult skeletal muscle, the remedy of muscle injuries and the cultivation of high-yield transgenic cattle. 展开更多
关键词 MYOGENIN small interfering RNA adult bovine skeletal muscle satellite cell DIFFERENTIATION
下载PDF
IGF-1, bFGF EXPRESSION AND VASCULAR REGENERATION IN ACUTE INFARCTED CANINE MYOCARDIUM AFTER AUTOLOGUS SKELETAL MUSCLE SATELLITE CELL IMPLANTATION
12
作者 朱洪生 钟竑 张臻 《Journal of Shanghai Second Medical University(Foreign Language Edition)》 2003年第1期1-6,共6页
Objective To study the cell growth factor secretion and vascular regeneration in acute in-farcted myocardium after autologous skeletal muscle satellite cell implantation. Methods Autologous skeletal muscle satellite c... Objective To study the cell growth factor secretion and vascular regeneration in acute in-farcted myocardium after autologous skeletal muscle satellite cell implantation. Methods Autologous skeletal muscle satellite cells from adult mongrel canine were implanted into the acute myocardial infarct site via the ligated left anterior descending (LAD) artery. Specimens were harvested at 2, 4 , 8 weeks after implantation for the expression of insulin-like growth factor-1 (IGF-1), basic fibroblast growth factor ( bFGF) and the vascular density. Results The expression of IGF-1, bFGF and the vascular density in skeletal muscle satellite cell implant group were higher than that in the control group. Conclusion The skeletal muscle satellite cells, after being implanted into the acute myocardial infarction, not only showed myocardial regeneration, but also showed the ability to secrete the cell factors, hence representing a positive effect on the regeneration of the infarcted myocardium. 展开更多
关键词 skeletal muscle satellite cell myocardial infarction cell growth factor vascular regeneration
下载PDF
THE IMPROVEMENT OF INFARCTED MYOCARDIAL CONTRACTILE FORCE AFTER AUTOLOGOUS SKELETAL MUSCLE SATELLITE CELL IMPLANTATION
13
作者 钟竑 朱洪生 张臻 《Journal of Shanghai Second Medical University(Foreign Language Edition)》 2002年第1期11-15,共5页
Objective To study the improvement of infarcted myocardial contractile force after autologous skeletal muscle satellite cell implantation via intracoronary arterial perfusion. Methods Skeletal muscle cells were harves... Objective To study the improvement of infarcted myocardial contractile force after autologous skeletal muscle satellite cell implantation via intracoronary arterial perfusion. Methods Skeletal muscle cells were harvested from gluteus max of adult mongrel dogs and the cells were cultured and expanded before being labeled with DAPI (4’, 6-diamidino-2-phenylindone). The labeled cells were then implanted into the acute myocardial infarct site via the ligated left anterior descending (LAD) coronary artery. Specimens were taken at 2nd, 4th, 8th week after myoblast implantation for histologic and contractile force evaluation, respectively. Results The satellite cells with fluorescence had been observed in the infarct site and also in papi- llary muscle with consistent oriented direction of host myocardium. A portion of the implanted cells had differen- tiated into muscle fibers. Two weeks after implantation, the myocardial contractile force showed no significant difference between the cell implant group and control group. At 4 and 8 week, the contractile force in the cell implant group was better than that in control group. Conclusion The skeletal muscle satellite cells, implanted into infarct myocardium by intracoronary arterial perfusion, could disseminate through the entire infarcted zone with myocardial regeneration and improve the contractile function of the infarcted myocardium. 展开更多
关键词 acute myocardial infarction skeletal muscle satellite cell cell implantation myocardial regeneration myocardial contractile force
下载PDF
Skeletal stem cells in bone development,homeostasis,and disease
14
作者 Guixin Yuan Xixi Lin +2 位作者 Ying Liu Matthew B.Greenblatt Ren Xu 《Protein & Cell》 SCIE CSCD 2024年第8期559-574,共16页
Tissue-resident stem cells are essential for development and repair,and in the skeleton,this function is fulfilled by recently identified skeletal stem cells(SSCs).However,recent work has identified that SSCs are not ... Tissue-resident stem cells are essential for development and repair,and in the skeleton,this function is fulfilled by recently identified skeletal stem cells(SSCs).However,recent work has identified that SSCs are not monolithic,with long bones,craniofacial sites,and the spine being formed by distinct stem cells.Recent studies have utilized techniques such as fluorescence-activated cell sorting,lineage tracing,and single-cell sequencing to investigate the involvement of ssCs in bone development,homeostasis,and disease.These investigations have allowed researchers to map the lineage commitment trajectory of ssCs in different parts of the body and at different time points.Furthermore,recent studies have shed light on the characteristics of ssCs in both physiological and pathological conditions.This review focuses on discussing the spatiotemporal distribution of ssCs and enhancing our understanding of the diversity and plasticity of ssCs by summarizing recent discoveries. 展开更多
关键词 skeletal stem cells bone development endochondral ossification intramembranous ossification lineage tracing
原文传递
LncRNA GTL2 regulates myoblast proliferation and differentiation via the PKA-CREB pathway in Duolang sheep
15
作者 Qian Chen Jing-Jing Bao +10 位作者 He-Chun Zhang Chang Huang Qian Zhao Ya-Bin Pu Lin Jiang Adel Hosseiny Muhammad Ibrahim Tanveer Hussain Xiao-Hong He Yue-Hui Ma Qian-Jun Zhao 《Zoological Research》 SCIE CSCD 2024年第6期1261-1275,共15页
Long non-coding RNAs(lncRNAs),which are RNA molecules longer than 200 nucleotides that do not encode proteins,are implicated in a variety of biological processes,including growth and development.Despite research into ... Long non-coding RNAs(lncRNAs),which are RNA molecules longer than 200 nucleotides that do not encode proteins,are implicated in a variety of biological processes,including growth and development.Despite research into the role of lnc RNAs in skeletal muscle development,the regulatory mechanisms governing ovine skeletal muscle development remain unclear.In this study,we analyzed the expression profiles of lnc RNAs in skeletal muscle from 90-day-old embryos(F90),1-month-old lambs(L30),and 3-year-old adult sheep(A3Y) using RNA sequencing.In total,4738 lnc RNAs were identified,including 997 that were differentially expressed.Short-time series expression miner analysis identified eight significant expression profiles and a subset of lnc RNAs potentially involved in muscle development.Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that the predicted target genes of these lnc RNAs were primarily enriched in pathways associated with muscle development,such as the c AMP and Wnt signaling pathways.Notably,the expression of lnc RNA GTL2 was found to decrease during muscle development.Moreover,GTL2 was highly expressed during the differentiation of skeletal muscle satellite cells(SCs) and was shown to modulate ovine myogenesis by affecting the phosphorylation levels of PKA and CREB.Additionally,GTL2 was found to regulate both the proliferation and differentiation of SCs via the PKACREB signaling pathway.Overall,this study provides a valuable resource and offers novel insights into the functional roles and regulatory mechanisms of lnc RNAs in ovine skeletal muscle growth and development. 展开更多
关键词 skeletal muscle LncRNA skeletal muscle satellite cells SHEEP PKA-CREB pathway
下载PDF
In vivo analysis of hybrid hydrogels containing dual growth factor combinations,and skeletal stem cells under mechanical stimulation for bone repair
16
作者 David Gothard Michael Rotherham +13 位作者 Emma L.Smith Janos M.Kanczler James Henstock Julia A.Wells Carol A.Roberts Omar Qutachi Heather Peto Hassan Rashidi Luis Rojo Lisa J.White Molly M.Stevens Alicia J.El Haj Felicity R.J.ose Richard O.C.Oreffo 《Mechanobiology in Medicine》 2024年第4期97-109,共13页
Bone tissue engineering requires a combination of materials,cells,growth factors and mechanical cues to recapitulate bone formation.In this study we evaluated hybrid hydrogels for minimally invasive bone formation by ... Bone tissue engineering requires a combination of materials,cells,growth factors and mechanical cues to recapitulate bone formation.In this study we evaluated hybrid hydrogels for minimally invasive bone formation by combining biomaterials with skeletal stem cells and staged release of growth factors together with mechanotransduction.Hybrid hydrogels consisting of alginate and decellularized,demineralised bone extracellular matrix(ALG/ECM)were seeded with Stro-1t human bone marrow stromal cells(HBMSCs).Dual combinations of growth factors within staged-release polylactic-co-glycolic acid(PLGA)microparticles were added to hydrogels to mimic,in part,the signalling events in bone regeneration:VEGF,TGF-β_(3),PTHrP(fast release),or BMP-2,vitamin D_(3)(slow release).Mechanotransduction was initiated using magnetic fields to remotely actuate superparamagnetic nanoparticles(MNP)targeted to TREK1 ion channels.Hybrid hydrogels were implanted subcutaneously within mice for 28 days,and evaluated for bone formation using micro-CT and histology.Control hydrogels lacking HBMSCs,growth factors,or MNP became mineralised,and neither growth factors,HBMSCs,nor mechanotransduction increased bone formation.However,structural differences in the newly-formed bone were influenced by growth factors.Slow release of BMP-2 induced thick bone trabeculae and PTHrP or VitD_(3)increased bone formation.However,fast-release of TGF-β_(3)and VEGF resulted in thin trabeculae.Mechanotransduction reversed the trabecular thinning and increased collagen deposition with PTHrP and VitD_(3).Our findings demonstrate the potential of hybrid ALG/ECM hydrogel–cell–growth factor constructs to repair bone in combination with mechanotransduction for fine-tuning bone structure.This approach may form a minimally invasive reparative strategy for bone tissue engineering applications. 展开更多
关键词 Growth factors Controlled release Bone ECM Bone formation MECHANOTRANSDUCTION skeletal stem cell
原文传递
Effects of Dandelion Extract on the Proliferation of Rat Skeletal Muscle Cells and the Inhibition of a Lipopolysaccharide-lnduced Inflammatory Reaction 被引量:11
17
作者 Qiang Liu Heng Zhao +3 位作者 Yue Gao Yan Meng Xiang-Xuan Zhao Shi-Nong Pan 《Chinese Medical Journal》 SCIE CAS CSCD 2018年第14期1724-1731,共8页
Background: Dandelion is commonly used in traditional Chinese medicine with several active compounds found in extracts. It has a variety of pharmacological effects, such as a reduction in swelling and inflammation, a... Background: Dandelion is commonly used in traditional Chinese medicine with several active compounds found in extracts. It has a variety of pharmacological effects, such as a reduction in swelling and inflammation, and detoxification. The mechanism by which dandelion extract inhibits the inflammatory response in skeletal muscle cells remains unknown; therefore, the aim of this study was to investigate the effects of dandelion extract root on the proliferation of skeletal muscle cells and the alleviation of lipopolysaccharide (LPS)-induced inflammatory response in vitro. Methods: Rat skeletal muscle cells were isolated from Sprague-Dawley rat and cultured in vitro which were cultured in basal medium, or medium containing LPS or dandelion extract. Cell counting kit-8 (CCK-8) was employed to measure cell proliferation; meanwhile, the optimal concentration of dandelion extract and treatment time were selected. Crystal violet staining was used to detect the proliferation of muscle cells. Western blotting analysis was used to detect the levels of inflammatory factors, myogenic factor, and p-AKT protein expression. Results: The optimal concentration and treatment time of dandelion extract for the following study were 5 mg/ml and 4 days, respectively. Dandelion extract was found to increase proliferation of rat skeletal muscle cells (t = 3.145, P 〈 0.05), with the highest effect observed at 5 mg/ml. LPS was found to decrease proliferation of skeletal muscle cells (t = -131.959, P 〈 0.001), and dandelion extract could against this affection (t = 19.466, P 〈 0.01). LPS could induce expression of inflammatory factors, including interleukin (IL)-16, IL-6 and tumor necrosis factor (TNF)-α (IL-16: t = 9.118, P 〈 0.01; IL-6: t = 4.346, P 〈 0.05; TNF-α: t = 15.806, P 〈 0.05), and dandelion extract was shown to reduce LPS-induced expression of IL- 16, IL-6 and TNF-α (IL-I 6: t = -2.823, P 〈 0.05; IL-6: t = -3.348, P 〈 0.01; and TNF-α: t = -3.710, P 〈 0.01). Furthermore, LPS was also shown to decrease expression of myogenic factor, including myod 1 and myogenin (MyoDl: t = 4.039, P 〈 0:05 and myogenin: t = 3.300, P 〈 0.01), but dandelion extract was shown to against this effect of LPS (MyoD 1: t = -3.160, P 〈 0.05 and myogenin: t = -3.207, P 〈 0.01 ). And then, LPS was found to increase expression of p-AKT protein (p-AKT/AKT: t = 4.432, P 〈 0.05). Moreover, expression of p-AKT protein was found to decrease, with 5 mg/ml of dandelion extract (p-AKT/AKT: t = -3.618, P 〈 0.05). Conclusions: The findings indicate that dandelion extract plays an important role in skeletal muscle cells viability regulation, promote cells proliferation by increasing level of p-AKT protein expression, and reduce LPS-induced expression of inflammatory factors, inhibiting the inflammatory response of rat skeletal muscle cells. 展开更多
关键词 Anti-Inflammation Mechanism Dandelion Extract Herbal Plant Inflammation skeletal Muscle cells
原文传递
Synergy of single-cell sequencing analyses and in vivo lineage-tracing approaches:A new opportunity for stem cell biology 被引量:1
18
作者 YUKI MATSUSHITA WANIDA ONO NORIAKI ONO 《BIOCELL》 SCIE 2022年第5期1157-1162,共6页
Single-cell sequencing technologies have rapidly progressed in recent years,and been applied to characterize stem cells in a number of organs.Somatic(postnatal)stem cells are generally identified using combinations of... Single-cell sequencing technologies have rapidly progressed in recent years,and been applied to characterize stem cells in a number of organs.Somatic(postnatal)stem cells are generally identified using combinations of cell surface markers and transcription factors.However,it has been challenging to define micro-heterogeneity within“stem cell”populations,each of which stands at a different level of differentiation.As stem cells become defined at a single-cell level,their differentiation path becomes clearly defined.Here,this viewpoint discusses the potential synergy of single-cell sequencing analyses with in vivo lineage-tracing approaches,with an emphasis on practical considerations in stem cell biology. 展开更多
关键词 Single-cell sequencing in vivo lineage-lineage skeletal stem cells(SSCs) mesenchymal stem cells(MSCs) bone marrow stromal cells(BMSCs)
下载PDF
Recent updates on the biological basis of heterogeneity in bone marrow stromal cells/ skeletal stem cells 被引量:3
19
作者 Deepika Arora Pamela Gehron Robey 《Biomaterials Translational》 2022年第1期3-16,共14页
Based on studies over the last several decades,the self-renewing skeletal lineages derived from bone marrow stroma could be an ideal source for skeletal tissue engineering.However,the markers for osteogenic precursors... Based on studies over the last several decades,the self-renewing skeletal lineages derived from bone marrow stroma could be an ideal source for skeletal tissue engineering.However,the markers for osteogenic precursors;i.e.,bone marrow-derived skeletal stem cells(SSCs),in association with other cells of the marrow stroma(bone marrow stromal cells,BMSCs)and their heterogeneous nature both in vivo and in vitro remain to be clarified.This review aims to highlight:i)the importance of distinguishing BMSCs/SSCs from other“mesenchymal stem/stromal cells”,and ii)factors that are responsible for their heterogeneity,and how these factors impact on the differentiation potential of SSCs towards bone.The prospective role of SSC enrichment,their expansion and its impact on SSC phenotype is explored.Emphasis has also been given to emerging single cell RNA sequencing approaches in scrutinizing the unique population of SSCs within the BMSC population,along with their committed progeny.Understanding the factors involved in heterogeneity may help researchers to improvise their strategies to isolate,characterize and adopt best culture practices and source identification to develop standard operating protocols for developing reproducible stem cells grafts.However,more scientific understanding of the molecular basis of heterogeneity is warranted that may be obtained from the robust high-throughput functional transcriptomics of single cells or clonal populations. 展开更多
关键词 bone marrow stromal cells clonal analysis HETEROGENEITY single cell analysis skeletal stem cells
原文传递
Ptip safeguards the epigenetic control of skeletal stem cell quiescence and potency in skeletogenesis 被引量:1
20
作者 Jianfei Liang Jing Wang +8 位作者 Bingdong Sui Yibo Tong Jihua Chai Qin Zhou Chenxi Zheng Hao Wang Liang Kong Haojian Zhang Yi Bai 《Science Bulletin》 SCIE EI CAS CSCD 2024年第13期2099-2113,共15页
Stem cells remain in a quiescent state for long-term maintenance and preservation of potency;this process requires fine-tuning regulatory mechanisms.In this study,we identified the epigenetic landscape along the devel... Stem cells remain in a quiescent state for long-term maintenance and preservation of potency;this process requires fine-tuning regulatory mechanisms.In this study,we identified the epigenetic landscape along the developmental trajectory of skeletal stem cells(SSCs)in skeletogenesis governed by a key regulator,Ptip(also known as Paxip1,Pax interaction with transcription-activation domain protein-1).Our results showed that Ptip is required for maintaining the quiescence and potency of SSCs,and loss of Ptip in type II collagen(Col2)^(+)progenitors causes abnormal activation and differentiation of SSCs,impaired growth plate morphogenesis,and long bone dysplasia.We also found that Ptip suppressed the glycolysis of SSCs through downregulation of phosphoglycerate kinase 1(Pgk1)by repressing histone H3 lysine 27 acetylation(H3K27ac)at the promoter region.Notably,inhibition of glycolysis improved the function of SSCs despite Ptip deficiency.To the best of our knowledge,this is the first study to establish an epigenetic framework based on Ptip,which safeguards skeletal stem cell quiescence and potency through metabolic control.This framework is expected to improve SSC-based treatments of bone developmental disorders. 展开更多
关键词 skeletal stem cells Bone development Epigenetics Ptip GLYCOLYSIS
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部