针对大流检测、突变流检测和基数估计等的网络流量测量对保障网络安全具有重要意义.但当前相关研究存在实时性不足、测量精度不高等问题.针对上述问题,设计了一种基于多层Sketch(multiple layer sketch, ML Sketch)的网络流量测量模型....针对大流检测、突变流检测和基数估计等的网络流量测量对保障网络安全具有重要意义.但当前相关研究存在实时性不足、测量精度不高等问题.针对上述问题,设计了一种基于多层Sketch(multiple layer sketch, ML Sketch)的网络流量测量模型.首先,该模型采用自主设计的ML Sketch结构,使用分类存储结构提高了流量测量的精度.其次,在SDN(software defined network)环境下利用流量实时回放技术,模拟了流量的动态发生场景.最后,在SDN控制平面实现了对大流、突变流和基数估计类流量的实时动态检测.在UNSW-NB15上的实验结果表明,与传统Sketch结构相比,所设计的ML Sketch结构在F1_Score指标上最高提高4.81%,相关误差最高降低81.12%,验证了该模型的有效性.展开更多
In the past,sketches were a standard technique used for recognizing offenders and have remained a valuable tool for law enforcement and social security purposes.However,relying on eyewitness observations can lead to d...In the past,sketches were a standard technique used for recognizing offenders and have remained a valuable tool for law enforcement and social security purposes.However,relying on eyewitness observations can lead to discrepancies in the depictions of the sketch,depending on the experience and skills of the sketch artist.With the emergence of modern technologies such as Generative Adversarial Networks(GANs),generating images using verbal and textual cues is now possible,resulting in more accurate sketch depictions.In this study,we propose an adversarial network that generates human facial sketches using such cues provided by an observer.Additionally,we have introduced an Inverse Gamma Correction Technique to improve the training and enhance the quality of the generated sketches.To evaluate the effectiveness of our proposed method,we conducted experiments and analyzed the results using the inception score and Frechet Inception Distance metrics.Our proposed method achieved an overall inception score of 1.438±0.049 and a Frechet Inception Distance of 65.29,outperforming other state-of-the-art techniques.展开更多
文摘针对大流检测、突变流检测和基数估计等的网络流量测量对保障网络安全具有重要意义.但当前相关研究存在实时性不足、测量精度不高等问题.针对上述问题,设计了一种基于多层Sketch(multiple layer sketch, ML Sketch)的网络流量测量模型.首先,该模型采用自主设计的ML Sketch结构,使用分类存储结构提高了流量测量的精度.其次,在SDN(software defined network)环境下利用流量实时回放技术,模拟了流量的动态发生场景.最后,在SDN控制平面实现了对大流、突变流和基数估计类流量的实时动态检测.在UNSW-NB15上的实验结果表明,与传统Sketch结构相比,所设计的ML Sketch结构在F1_Score指标上最高提高4.81%,相关误差最高降低81.12%,验证了该模型的有效性.
文摘In the past,sketches were a standard technique used for recognizing offenders and have remained a valuable tool for law enforcement and social security purposes.However,relying on eyewitness observations can lead to discrepancies in the depictions of the sketch,depending on the experience and skills of the sketch artist.With the emergence of modern technologies such as Generative Adversarial Networks(GANs),generating images using verbal and textual cues is now possible,resulting in more accurate sketch depictions.In this study,we propose an adversarial network that generates human facial sketches using such cues provided by an observer.Additionally,we have introduced an Inverse Gamma Correction Technique to improve the training and enhance the quality of the generated sketches.To evaluate the effectiveness of our proposed method,we conducted experiments and analyzed the results using the inception score and Frechet Inception Distance metrics.Our proposed method achieved an overall inception score of 1.438±0.049 and a Frechet Inception Distance of 65.29,outperforming other state-of-the-art techniques.