Voltage scaling has been extensively used in industry for decades to reduce power consumption.In recent years,exploring digital circuit operation in moderate inversion has created an interest among researchers due to ...Voltage scaling has been extensively used in industry for decades to reduce power consumption.In recent years,exploring digital circuit operation in moderate inversion has created an interest among researchers due to its immense capability to provide a perfect tradeoff between high performance and low energy operation.But circuits operating in moderate inversion are susceptible to process variations and variability.To compute variability,statistical parameters such as the probability density function(PDF)and cumulative distribution function(CDF)are required.This paper presents an analytical model framework for delay calculations utilizing log skew normal distribution for ultradeep submicron technology nodes up to 22 nm.The CDF of the proposed model is utilized to calculate minimum and maximum delays with 3σ-accuracy providing better accuracy than the conventional methods.The obtained results are also compared with Monte Carlo simulations with errors lying within the acceptable range of 2%-4%.展开更多
In order to recognize the jamming pattern in anti-jamming, a novel fuzzy jamming recognition method based on statistic parameters of received signal’s power spectral density (PSD) is proposed. It exploits PSD’s shap...In order to recognize the jamming pattern in anti-jamming, a novel fuzzy jamming recognition method based on statistic parameters of received signal’s power spectral density (PSD) is proposed. It exploits PSD’s shape factor and skewness of received signal as classified characters of jamming pattern. After the mean center and variance of each jamming pattern are calculated by using some jamming samples, an exponential fuzzy membership function is used to calculate the membership value of the recognized sample. Finally, the jamming pattern of received signal is recognized by the maximum membership principle. The simulation results show that the proposed algorithm can recognize common eight jamming patterns accurately.展开更多
文摘Voltage scaling has been extensively used in industry for decades to reduce power consumption.In recent years,exploring digital circuit operation in moderate inversion has created an interest among researchers due to its immense capability to provide a perfect tradeoff between high performance and low energy operation.But circuits operating in moderate inversion are susceptible to process variations and variability.To compute variability,statistical parameters such as the probability density function(PDF)and cumulative distribution function(CDF)are required.This paper presents an analytical model framework for delay calculations utilizing log skew normal distribution for ultradeep submicron technology nodes up to 22 nm.The CDF of the proposed model is utilized to calculate minimum and maximum delays with 3σ-accuracy providing better accuracy than the conventional methods.The obtained results are also compared with Monte Carlo simulations with errors lying within the acceptable range of 2%-4%.
基金Sponsored by National Nature Science Foundation of China ( 61072078)China Postdoctoral Science Foundation Funded Project ( 20090461426)Jiangsu Planned Projects for Postdoctoral Research Funds ( 0902039C)
文摘In order to recognize the jamming pattern in anti-jamming, a novel fuzzy jamming recognition method based on statistic parameters of received signal’s power spectral density (PSD) is proposed. It exploits PSD’s shape factor and skewness of received signal as classified characters of jamming pattern. After the mean center and variance of each jamming pattern are calculated by using some jamming samples, an exponential fuzzy membership function is used to calculate the membership value of the recognized sample. Finally, the jamming pattern of received signal is recognized by the maximum membership principle. The simulation results show that the proposed algorithm can recognize common eight jamming patterns accurately.