To solve the high-dimensionality issue and improve its accuracy in credit risk assessment,a high-dimensionality-trait-driven learning paradigm is proposed for feature extraction and classifier selection.The proposed p...To solve the high-dimensionality issue and improve its accuracy in credit risk assessment,a high-dimensionality-trait-driven learning paradigm is proposed for feature extraction and classifier selection.The proposed paradigm consists of three main stages:categorization of high dimensional data,high-dimensionality-trait-driven feature extraction,and high-dimensionality-trait-driven classifier selection.In the first stage,according to the definition of high-dimensionality and the relationship between sample size and feature dimensions,the high-dimensionality traits of credit dataset are further categorized into two types:100<feature dimensions<sample size,and feature dimensions≥sample size.In the second stage,some typical feature extraction methods are tested regarding the two categories of high dimensionality.In the final stage,four types of classifiers are performed to evaluate credit risk considering different high-dimensionality traits.For the purpose of illustration and verification,credit classification experiments are performed on two publicly available credit risk datasets,and the results show that the proposed high-dimensionality-trait-driven learning paradigm for feature extraction and classifier selection is effective in handling high-dimensional credit classification issues and improving credit classification accuracy relative to the benchmark models listed in this study.展开更多
English as the world’s lingua franca,beyond all doubt,is the first choice of all the language learners world wide.The whole English learning movement has produced a profound influence on Chinese culture.This paper is...English as the world’s lingua franca,beyond all doubt,is the first choice of all the language learners world wide.The whole English learning movement has produced a profound influence on Chinese culture.This paper is an attempt to outline the role English plays in China and its further development,and based on this,suggests the oncoming paradigm shift of English learning in China.展开更多
During the past few decades,mobile wireless communications have experienced four generations of technological revolution,namely from 1 G to 4 G,and the deployment of the latest 5 G networks is expected to take place i...During the past few decades,mobile wireless communications have experienced four generations of technological revolution,namely from 1 G to 4 G,and the deployment of the latest 5 G networks is expected to take place in 2019.One fundamental question is how we can push forward the development of mobile wireless communications while it has become an extremely complex and sophisticated system.We believe that the answer lies in the huge volumes of data produced by the network itself,and machine learning may become a key to exploit such information.In this paper,we elaborate why the conventional model-based paradigm,which has been widely proved useful in pre-5 G networks,can be less efficient or even less practical in the future 5 G and beyond mobile networks.Then,we explain how the data-driven paradigm,using state-of-the-art machine learning techniques,can become a promising solution.At last,we provide a typical use case of the data-driven paradigm,i.e.,proactive load balancing,in which online learning is utilized to adjust cell configurations in advance to avoid burst congestion caused by rapid traffic changes.展开更多
With the rapid development of artificial intelligence technology and increasing material data,machine learning-and artificial intelligence-assisted design of high-performance steel materials is becoming a mainstream p...With the rapid development of artificial intelligence technology and increasing material data,machine learning-and artificial intelligence-assisted design of high-performance steel materials is becoming a mainstream paradigm in materials science.Machine learning methods,based on an interdisciplinary discipline between computer science,statistics and material science,are good at discovering correlations between numerous data points.Compared with the traditional physical modeling method in material science,the main advantage of machine learning is that it overcomes the complex physical mechanisms of the material itself and provides a new perspective for the research and development of novel materials.This review starts with data preprocessing and the introduction of different machine learning models,including algorithm selection and model evaluation.Then,some successful cases of applying machine learning methods in the field of steel research are reviewed based on the main theme of optimizing composition,structure,processing,and performance.The application of machine learning methods to the performance-oriented inverse design of material composition and detection of steel defects is also reviewed.Finally,the applicability and limitations of machine learning in the material field are summarized,and future directions and prospects are discussed.展开更多
Big data have the characteristics of enormous volume,high velocity,diversity,value-sparsity,and uncertainty,which lead the knowledge learning from them full of challenges.With the emergence of crowdsourcing,versatile ...Big data have the characteristics of enormous volume,high velocity,diversity,value-sparsity,and uncertainty,which lead the knowledge learning from them full of challenges.With the emergence of crowdsourcing,versatile information can be obtained on-demand so that the wisdom of crowds is easily involved to facilitate the knowledge learning process.During the past thirteen years,researchers in the AI community made great efforts to remove the obstacles in the field of learning from crowds.This concentrated survey paper comprehensively reviews the technical progress in crowdsourcing learning from a systematic perspective that includes three dimensions of data,models,and learning processes.In addition to reviewing existing important work,the paper places a particular emphasis on providing some promising blueprints on each dimension as well as discussing the lessons learned from our past research work,which will light up the way for new researchers and encourage them to pursue new contributions.展开更多
Sometimes foreign language teachers find formal instructions unrewarding. This paper intends to find answers to the problems found in the English teaching classroom at university level in China by reviewing the SLA th...Sometimes foreign language teachers find formal instructions unrewarding. This paper intends to find answers to the problems found in the English teaching classroom at university level in China by reviewing the SLA theories on formal instruction and some pedagogical implications drawn from the findings are discussed.展开更多
From AlphaGo to ChatGPT,the field of AI has launched a series of remarkable achievements in recent years.Analyzing,comparing,and summarizing these achievements at the paradigm level is important for future AI innovati...From AlphaGo to ChatGPT,the field of AI has launched a series of remarkable achievements in recent years.Analyzing,comparing,and summarizing these achievements at the paradigm level is important for future AI innovation,but has not received sufficient attention.In this paper,we give an overview and perspective on machine learning paradigms.First,we propose a paradigm taxonomy with three levels and seven dimensions from a knowledge perspective.Accordingly,we give an overview on three basic and twelve extended learning paradigms,such as Ensemble Learning,Transfer Learning,etc.,with figures in unified style.We further analyze three advanced paradigms,i.e.,AlphaGo,AlphaFold and ChatGPT.Second,to enable more efficient and effective scientific discovery,we propose to build a new ecosystem that drives AI paradigm shifts through the decentralized science(DeSci)movement based on decentralized autonomous organization(DAO).To this end,we design the Hanoi framework,which integrates human factors,parallel intelligence based on a combination of artificial systems and the natural world,and the DAO to inspire AI innovations.展开更多
Energy forecasting for electricity productivity is the process of applying statistics with possible Quantum or Classical Computing with help from new innovative techniques offered by artificial intelligence to make pr...Energy forecasting for electricity productivity is the process of applying statistics with possible Quantum or Classical Computing with help from new innovative techniques offered by artificial intelligence to make predictions about consumption levels.This kind of computation presents corresponding utility costs in both the tactical and strategical or short term and long term.Energy forecasting models take into account historical data,trends,weather inputs,tariff structures,and occupancy schedules in the urban city due to population growth,etc.to make predictions.Additionally,energy forecasting as future paradigm is driven by electricity production demand and it is a cost-effective technique to predict future energy needs,which is a paradigm to achieve demand and supply chain equilibrium based on available energy both renewable and non-renewable sources.展开更多
基金This work is partially supported by grants from the Key Program of National Natural Science Foundation of China(NSFC Nos.71631005 and 71731009)the Major Program of the National Social Science Foundation of China(No.19ZDA103).
文摘To solve the high-dimensionality issue and improve its accuracy in credit risk assessment,a high-dimensionality-trait-driven learning paradigm is proposed for feature extraction and classifier selection.The proposed paradigm consists of three main stages:categorization of high dimensional data,high-dimensionality-trait-driven feature extraction,and high-dimensionality-trait-driven classifier selection.In the first stage,according to the definition of high-dimensionality and the relationship between sample size and feature dimensions,the high-dimensionality traits of credit dataset are further categorized into two types:100<feature dimensions<sample size,and feature dimensions≥sample size.In the second stage,some typical feature extraction methods are tested regarding the two categories of high dimensionality.In the final stage,four types of classifiers are performed to evaluate credit risk considering different high-dimensionality traits.For the purpose of illustration and verification,credit classification experiments are performed on two publicly available credit risk datasets,and the results show that the proposed high-dimensionality-trait-driven learning paradigm for feature extraction and classifier selection is effective in handling high-dimensional credit classification issues and improving credit classification accuracy relative to the benchmark models listed in this study.
文摘English as the world’s lingua franca,beyond all doubt,is the first choice of all the language learners world wide.The whole English learning movement has produced a profound influence on Chinese culture.This paper is an attempt to outline the role English plays in China and its further development,and based on this,suggests the oncoming paradigm shift of English learning in China.
基金partially supported by the National Natural Science Foundation of China(61751306,61801208,61671233)the Jiangsu Science Foundation(BK20170650)+2 种基金the Postdoctoral Science Foundation of China(BX201700118,2017M621712)the Jiangsu Postdoctoral Science Foundation(1701118B)the Fundamental Research Funds for the Central Universities(021014380094)
文摘During the past few decades,mobile wireless communications have experienced four generations of technological revolution,namely from 1 G to 4 G,and the deployment of the latest 5 G networks is expected to take place in 2019.One fundamental question is how we can push forward the development of mobile wireless communications while it has become an extremely complex and sophisticated system.We believe that the answer lies in the huge volumes of data produced by the network itself,and machine learning may become a key to exploit such information.In this paper,we elaborate why the conventional model-based paradigm,which has been widely proved useful in pre-5 G networks,can be less efficient or even less practical in the future 5 G and beyond mobile networks.Then,we explain how the data-driven paradigm,using state-of-the-art machine learning techniques,can become a promising solution.At last,we provide a typical use case of the data-driven paradigm,i.e.,proactive load balancing,in which online learning is utilized to adjust cell configurations in advance to avoid burst congestion caused by rapid traffic changes.
基金financially supported by the National Natural Science Foundation of China(Nos.52122408,52071023,51901013,and 52101019)the Fundamental Research Funds for the Central Universities(University of Science and Technology Beijing,Nos.FRF-TP-2021-04C1 and 06500135).
文摘With the rapid development of artificial intelligence technology and increasing material data,machine learning-and artificial intelligence-assisted design of high-performance steel materials is becoming a mainstream paradigm in materials science.Machine learning methods,based on an interdisciplinary discipline between computer science,statistics and material science,are good at discovering correlations between numerous data points.Compared with the traditional physical modeling method in material science,the main advantage of machine learning is that it overcomes the complex physical mechanisms of the material itself and provides a new perspective for the research and development of novel materials.This review starts with data preprocessing and the introduction of different machine learning models,including algorithm selection and model evaluation.Then,some successful cases of applying machine learning methods in the field of steel research are reviewed based on the main theme of optimizing composition,structure,processing,and performance.The application of machine learning methods to the performance-oriented inverse design of material composition and detection of steel defects is also reviewed.Finally,the applicability and limitations of machine learning in the material field are summarized,and future directions and prospects are discussed.
基金supported by the National Key Research and Development Program of China(2018AAA0102002)the National Natural Science Foundation of China(62076130,91846104).
文摘Big data have the characteristics of enormous volume,high velocity,diversity,value-sparsity,and uncertainty,which lead the knowledge learning from them full of challenges.With the emergence of crowdsourcing,versatile information can be obtained on-demand so that the wisdom of crowds is easily involved to facilitate the knowledge learning process.During the past thirteen years,researchers in the AI community made great efforts to remove the obstacles in the field of learning from crowds.This concentrated survey paper comprehensively reviews the technical progress in crowdsourcing learning from a systematic perspective that includes three dimensions of data,models,and learning processes.In addition to reviewing existing important work,the paper places a particular emphasis on providing some promising blueprints on each dimension as well as discussing the lessons learned from our past research work,which will light up the way for new researchers and encourage them to pursue new contributions.
文摘Sometimes foreign language teachers find formal instructions unrewarding. This paper intends to find answers to the problems found in the English teaching classroom at university level in China by reviewing the SLA theories on formal instruction and some pedagogical implications drawn from the findings are discussed.
基金This work was supported by the National Key Research and Development Program of China(2020YFB2104001)the National Natural Science Foundation of China(62271485,61903363,U1811463)Open Project of the State Key Laboratory for Management and Control of Complex Systems(20220117).
文摘From AlphaGo to ChatGPT,the field of AI has launched a series of remarkable achievements in recent years.Analyzing,comparing,and summarizing these achievements at the paradigm level is important for future AI innovation,but has not received sufficient attention.In this paper,we give an overview and perspective on machine learning paradigms.First,we propose a paradigm taxonomy with three levels and seven dimensions from a knowledge perspective.Accordingly,we give an overview on three basic and twelve extended learning paradigms,such as Ensemble Learning,Transfer Learning,etc.,with figures in unified style.We further analyze three advanced paradigms,i.e.,AlphaGo,AlphaFold and ChatGPT.Second,to enable more efficient and effective scientific discovery,we propose to build a new ecosystem that drives AI paradigm shifts through the decentralized science(DeSci)movement based on decentralized autonomous organization(DAO).To this end,we design the Hanoi framework,which integrates human factors,parallel intelligence based on a combination of artificial systems and the natural world,and the DAO to inspire AI innovations.
文摘Energy forecasting for electricity productivity is the process of applying statistics with possible Quantum or Classical Computing with help from new innovative techniques offered by artificial intelligence to make predictions about consumption levels.This kind of computation presents corresponding utility costs in both the tactical and strategical or short term and long term.Energy forecasting models take into account historical data,trends,weather inputs,tariff structures,and occupancy schedules in the urban city due to population growth,etc.to make predictions.Additionally,energy forecasting as future paradigm is driven by electricity production demand and it is a cost-effective technique to predict future energy needs,which is a paradigm to achieve demand and supply chain equilibrium based on available energy both renewable and non-renewable sources.