The International Skin Imaging Collaboration(ISIC)datasets are pivotal resources for researchers in machine learning for medical image analysis,especially in skin cancer detection.These datasets contain tens of thousa...The International Skin Imaging Collaboration(ISIC)datasets are pivotal resources for researchers in machine learning for medical image analysis,especially in skin cancer detection.These datasets contain tens of thousands of dermoscopic photographs,each accompanied by gold-standard lesion diagnosis metadata.Annual challenges associated with ISIC datasets have spurred significant advancements,with research papers reporting metrics surpassing those of human experts.Skin cancers are categorized into melanoma and non-melanoma types,with melanoma posing a greater threat due to its rapid potential for metastasis if left untreated.This paper aims to address challenges in skin cancer detection via visual inspection and manual examination of skin lesion images,processes historically known for their laboriousness.Despite notable advancements in machine learning and deep learning models,persistent challenges remain,largely due to the intricate nature of skin lesion images.We review research on convolutional neural networks(CNNs)in skin cancer classification and segmentation,identifying issues like data duplication and augmentation problems.We explore the efficacy of Vision Transformers(ViTs)in overcoming these challenges within ISIC dataset processing.ViTs leverage their capabilities to capture both global and local relationships within images,reducing data duplication and enhancing model generalization.Additionally,ViTs alleviate augmentation issues by effectively leveraging original data.Through a thorough examination of ViT-based methodologies,we illustrate their pivotal role in enhancing ISIC image classification and segmentation.This study offers valuable insights for researchers and practitioners looking to utilize ViTs for improved analysis of dermatological images.Furthermore,this paper emphasizes the crucial role of mathematical and computational modeling processes in advancing skin cancer detection methodologies,highlighting their significance in improving algorithmic performance and interpretability.展开更多
Skin segmentation is widely used in many computer vision tasks to improve automated visualiza- tion. This paper presents a graph cuts algorithm to segment arbitrary skin regions from images. The detected face is used ...Skin segmentation is widely used in many computer vision tasks to improve automated visualiza- tion. This paper presents a graph cuts algorithm to segment arbitrary skin regions from images. The detected face is used to determine the foreground skin seeds and the background non-skin seeds with the color probability distributions for the foreground represented by a single Gaussian model and for the background by a Gaussian mixture model. The probability distribution of the image is used for noise suppression to alle- viate the influence of the background regions having skin-like colors. Finally, the skin is segmented by graph cuts, with the regional parameter y optimally selected to adapt to different images. Tests of the algorithm on many real world photographs show that the scheme accurately segments skin regions and is robust against illumination variations, individual skin variations, and cluttered backgrounds.展开更多
Melanoma,due to its higher mortality rate,is considered as one of the most pernicious types of skin cancers,mostly affecting the white populations.It has been reported a number of times and is now widely accepted,that...Melanoma,due to its higher mortality rate,is considered as one of the most pernicious types of skin cancers,mostly affecting the white populations.It has been reported a number of times and is now widely accepted,that early detection of melanoma increases the chances of the subject’s survival.Computer-aided diagnostic systems help the experts in diagnosing the skin lesion at earlier stages using machine learning techniques.In thiswork,we propose a framework that accurately segments,and later classifies,the lesion using improved image segmentation and fusion methods.The proposed technique takes an image and passes it through two methods simultaneously;one is the weighted visual saliency-based method,and the second is improved HDCT based saliency estimation.The resultant image maps are later fused using the proposed image fusion technique to generate a localized lesion region.The resultant binary image is later mapped back to the RGB image and fed into the Inception-ResNet-V2 pre-trained model-trained by applying transfer learning.The simulation results show improved performance compared to several existing methods.展开更多
Heart rate is an important metric for determining physical and mental health.In recent years,remote photoplethysmography(rPPG)has been widely used in characterizing physiological signals in human subjects.Currently,re...Heart rate is an important metric for determining physical and mental health.In recent years,remote photoplethysmography(rPPG)has been widely used in characterizing physiological signals in human subjects.Currently,research on non-contact detection of heart rate mainly focuses on the capture and separation of spectral signals from video imagery.However,this method is very sensitive to the movement of the test subject and light intensity variation,and this results in motion artifacts which presents challenges in extracting accurate physiological signals such as heart rate.In this paper,an improved method for rPPG signal preprocessing is proposed.Based on the well known red green blue(RGB)color space,we segmented skin tone in different color spaces and extracted rPPG signals,after which we use a skin segmentation training model based on the luminance component,the blue-difference chroma components,and red-difference chroma components(YCbCr),as well as hue saturation intensity(HSI)color models.In the experimental verification section,we compare the robustness of the signal on different color spaces.In summary,we are experimentally verifying a better image pre-processing method based on real-time rPPG,which results in more precise measurements through the comparative analysis of skin segmentation and signal quality.展开更多
For face detection under complex background and illumination, a detection method that combines the skin color segmentation and cost-sensitive Adaboost algorithm is proposed in this paper. First, by using the character...For face detection under complex background and illumination, a detection method that combines the skin color segmentation and cost-sensitive Adaboost algorithm is proposed in this paper. First, by using the characteristic of human skin color clustering in the color space, the skin color area in YC b C r color space is extracted and a large number of irrelevant backgrounds are excluded; then for remedying the deficiencies of Adaboost algorithm, the cost-sensitive function is introduced into the Adaboost algorithm; finally the skin color segmentation and cost-sensitive Adaboost algorithm are combined for the face detection. Experimental results show that the proposed detection method has a higher detection rate and detection speed, which can more adapt to the actual field environment.展开更多
In view of the current gesture recognition algorithm based on skin color segmentation is not flexible and has weak resistance to the environment, this paper puts forward a new method of skin color modeling to improve ...In view of the current gesture recognition algorithm based on skin color segmentation is not flexible and has weak resistance to the environment, this paper puts forward a new method of skin color modeling to improve the adaptability of gesture segmentation when it face to different states. The modeling built by double color space instead of only one is compatible both in YCbCr and HSV color space to training the Gaussian model which can update the threshold value for binarization. Finally, this paper designed a natural gesture recognition and interactive systems based on the double color space model. It has shown that the system has a good interactive experience in different environments.展开更多
文摘The International Skin Imaging Collaboration(ISIC)datasets are pivotal resources for researchers in machine learning for medical image analysis,especially in skin cancer detection.These datasets contain tens of thousands of dermoscopic photographs,each accompanied by gold-standard lesion diagnosis metadata.Annual challenges associated with ISIC datasets have spurred significant advancements,with research papers reporting metrics surpassing those of human experts.Skin cancers are categorized into melanoma and non-melanoma types,with melanoma posing a greater threat due to its rapid potential for metastasis if left untreated.This paper aims to address challenges in skin cancer detection via visual inspection and manual examination of skin lesion images,processes historically known for their laboriousness.Despite notable advancements in machine learning and deep learning models,persistent challenges remain,largely due to the intricate nature of skin lesion images.We review research on convolutional neural networks(CNNs)in skin cancer classification and segmentation,identifying issues like data duplication and augmentation problems.We explore the efficacy of Vision Transformers(ViTs)in overcoming these challenges within ISIC dataset processing.ViTs leverage their capabilities to capture both global and local relationships within images,reducing data duplication and enhancing model generalization.Additionally,ViTs alleviate augmentation issues by effectively leveraging original data.Through a thorough examination of ViT-based methodologies,we illustrate their pivotal role in enhancing ISIC image classification and segmentation.This study offers valuable insights for researchers and practitioners looking to utilize ViTs for improved analysis of dermatological images.Furthermore,this paper emphasizes the crucial role of mathematical and computational modeling processes in advancing skin cancer detection methodologies,highlighting their significance in improving algorithmic performance and interpretability.
基金Supported by the National Natural Science Foundation of China (No. 60472028)the Specialized Research Fund for the Doctoral Program of Higher Education of MOE, China (No. 20040003015)
文摘Skin segmentation is widely used in many computer vision tasks to improve automated visualiza- tion. This paper presents a graph cuts algorithm to segment arbitrary skin regions from images. The detected face is used to determine the foreground skin seeds and the background non-skin seeds with the color probability distributions for the foreground represented by a single Gaussian model and for the background by a Gaussian mixture model. The probability distribution of the image is used for noise suppression to alle- viate the influence of the background regions having skin-like colors. Finally, the skin is segmented by graph cuts, with the regional parameter y optimally selected to adapt to different images. Tests of the algorithm on many real world photographs show that the scheme accurately segments skin regions and is robust against illumination variations, individual skin variations, and cluttered backgrounds.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research Group No.(RG-1438-034)and co-authors K.A.and M.A.
文摘Melanoma,due to its higher mortality rate,is considered as one of the most pernicious types of skin cancers,mostly affecting the white populations.It has been reported a number of times and is now widely accepted,that early detection of melanoma increases the chances of the subject’s survival.Computer-aided diagnostic systems help the experts in diagnosing the skin lesion at earlier stages using machine learning techniques.In thiswork,we propose a framework that accurately segments,and later classifies,the lesion using improved image segmentation and fusion methods.The proposed technique takes an image and passes it through two methods simultaneously;one is the weighted visual saliency-based method,and the second is improved HDCT based saliency estimation.The resultant image maps are later fused using the proposed image fusion technique to generate a localized lesion region.The resultant binary image is later mapped back to the RGB image and fed into the Inception-ResNet-V2 pre-trained model-trained by applying transfer learning.The simulation results show improved performance compared to several existing methods.
基金This work was financially supported by the National Nature Science Foundation of China(Grant Number:61962010).
文摘Heart rate is an important metric for determining physical and mental health.In recent years,remote photoplethysmography(rPPG)has been widely used in characterizing physiological signals in human subjects.Currently,research on non-contact detection of heart rate mainly focuses on the capture and separation of spectral signals from video imagery.However,this method is very sensitive to the movement of the test subject and light intensity variation,and this results in motion artifacts which presents challenges in extracting accurate physiological signals such as heart rate.In this paper,an improved method for rPPG signal preprocessing is proposed.Based on the well known red green blue(RGB)color space,we segmented skin tone in different color spaces and extracted rPPG signals,after which we use a skin segmentation training model based on the luminance component,the blue-difference chroma components,and red-difference chroma components(YCbCr),as well as hue saturation intensity(HSI)color models.In the experimental verification section,we compare the robustness of the signal on different color spaces.In summary,we are experimentally verifying a better image pre-processing method based on real-time rPPG,which results in more precise measurements through the comparative analysis of skin segmentation and signal quality.
基金supported by the National Basic Research Program of China(973 Program)under Grant No.2012CB215202the National Natural Science Foundation of China under Grant No.51205046
文摘For face detection under complex background and illumination, a detection method that combines the skin color segmentation and cost-sensitive Adaboost algorithm is proposed in this paper. First, by using the characteristic of human skin color clustering in the color space, the skin color area in YC b C r color space is extracted and a large number of irrelevant backgrounds are excluded; then for remedying the deficiencies of Adaboost algorithm, the cost-sensitive function is introduced into the Adaboost algorithm; finally the skin color segmentation and cost-sensitive Adaboost algorithm are combined for the face detection. Experimental results show that the proposed detection method has a higher detection rate and detection speed, which can more adapt to the actual field environment.
文摘In view of the current gesture recognition algorithm based on skin color segmentation is not flexible and has weak resistance to the environment, this paper puts forward a new method of skin color modeling to improve the adaptability of gesture segmentation when it face to different states. The modeling built by double color space instead of only one is compatible both in YCbCr and HSV color space to training the Gaussian model which can update the threshold value for binarization. Finally, this paper designed a natural gesture recognition and interactive systems based on the double color space model. It has shown that the system has a good interactive experience in different environments.