Bacterial infection and the ever-increasing bacterial resistance have imposed severe threat to human health.And bacterial contamination could significantly menace the wound healing process.Considering the sophisticate...Bacterial infection and the ever-increasing bacterial resistance have imposed severe threat to human health.And bacterial contamination could significantly menace the wound healing process.Considering the sophisticated wound healing process,novel strategies for skin tissue engineering are focused on the integration of bioactive ingredients,antibacterial agents included,into biomaterials with different morphologies to improve cell behaviors and promote wound healing.However,a comprehensive review on antibacterial wound dressing to enhance wound healing has not been reported.In this review,various antibacterial biomaterials as wound dressings will be discussed.Different kinds of antibacterial agents,including antibiotics,nanoparticles(metal and metallic oxides,lightinduced antibacterial agents),cationic organic agents,and others,and their recent advances are summarized.Biomaterial selection and fabrication of biomaterials with different structures and forms,including films,hydrogel,electrospun nanofibers,sponge,foam and three-dimension(3D)printed scaffold for skin regeneration,are elaborated discussed.Current challenges and the future perspectives are presented in thismultidisciplinary field.We envision that this review will provide a general insight to the elegant design and further refinement of wound dressing.展开更多
One of the leading causes of wound healing delays is bacterial infection,which limits the process of restoring the histological and functional integrity of the skin.Electrospun nanofibrous materials(ENMs)are biocompat...One of the leading causes of wound healing delays is bacterial infection,which limits the process of restoring the histological and functional integrity of the skin.Electrospun nanofibrous materials(ENMs)are biocompatible and biodegradable,and they can provide specific physical,chemical,and biological cues to accelerate wound healing.Based on this fact,a series of multifunctional ENMs for complex clinical applications,particularly infected skin injuries,have been developed.Anti-biotics,antimicrobial peptides(AMPs),metals and metal oxides(MMOs),and antibacterial polymers have previously been incorporated into ENMs through advanced material processing techniques,endowing ENMs with enhanced and excellent antibacterial activity.This review summarizes wound healing issues and provides recent advances in antibacterial ENMs created by cutting-edge technology.The future of clinical and translational research on ENMs is also discussed.展开更多
基金supported by the National Natural Science Foundation of China (grant numbers: 51973172)Natural Science Foundation of Shaanxi Province (No. 2020JC03 and 2019TD-020)+2 种基金State Key Laboratory for Mechanical Behavior of Materials, and Opening Project of Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University (No. 2019LHM-KFKT008)the World-Class Universities (Disciplines)the Characteristic Development Guidance Funds for the Central Universities
文摘Bacterial infection and the ever-increasing bacterial resistance have imposed severe threat to human health.And bacterial contamination could significantly menace the wound healing process.Considering the sophisticated wound healing process,novel strategies for skin tissue engineering are focused on the integration of bioactive ingredients,antibacterial agents included,into biomaterials with different morphologies to improve cell behaviors and promote wound healing.However,a comprehensive review on antibacterial wound dressing to enhance wound healing has not been reported.In this review,various antibacterial biomaterials as wound dressings will be discussed.Different kinds of antibacterial agents,including antibiotics,nanoparticles(metal and metallic oxides,lightinduced antibacterial agents),cationic organic agents,and others,and their recent advances are summarized.Biomaterial selection and fabrication of biomaterials with different structures and forms,including films,hydrogel,electrospun nanofibers,sponge,foam and three-dimension(3D)printed scaffold for skin regeneration,are elaborated discussed.Current challenges and the future perspectives are presented in thismultidisciplinary field.We envision that this review will provide a general insight to the elegant design and further refinement of wound dressing.
基金supported by Fellowship of China National Postdoctoral Program for Innovative Talents(BX20220240)Improvement Project for Theranostic Ability on Difficulty Miscellaneous Disease(Tumor)from National Health Commission of China(ZLYNXM202006)+1 种基金Chinese Central Special Fund for Local Science and Technology Development of Hubei Province(2018ZYYD023)Science and Technology Department of Hubei Province Key Project(2018ACA159).
文摘One of the leading causes of wound healing delays is bacterial infection,which limits the process of restoring the histological and functional integrity of the skin.Electrospun nanofibrous materials(ENMs)are biocompatible and biodegradable,and they can provide specific physical,chemical,and biological cues to accelerate wound healing.Based on this fact,a series of multifunctional ENMs for complex clinical applications,particularly infected skin injuries,have been developed.Anti-biotics,antimicrobial peptides(AMPs),metals and metal oxides(MMOs),and antibacterial polymers have previously been incorporated into ENMs through advanced material processing techniques,endowing ENMs with enhanced and excellent antibacterial activity.This review summarizes wound healing issues and provides recent advances in antibacterial ENMs created by cutting-edge technology.The future of clinical and translational research on ENMs is also discussed.