目的3维人体重建的目标在于建立真实可靠的3维人体模型。但目前基于SMPL(skinned multi-person linear model)模型重建3维人体的实验和一些公开数据集中,常常会出现预测的姿势角度值不符合真实人体关节角度规则的现象。针对这一问题,本...目的3维人体重建的目标在于建立真实可靠的3维人体模型。但目前基于SMPL(skinned multi-person linear model)模型重建3维人体的实验和一些公开数据集中,常常会出现预测的姿势角度值不符合真实人体关节角度规则的现象。针对这一问题,本文提出设置关节旋转角值域,使得重建的结果真实性更强、更符合人体关节机械结构。方法根据人体关节的联接结构将各个关节的运动进行划分。根据划分结果计算关节运动自由度,并结合实际情况提出基于SMPL模型的关节旋转值域。提出一个简单的重建方法来验证值域分析的正确性。结果使用3维人体数据集UP-3D进行相关实验,并对比以往直接根据学习结果生成重建模型的数据。在使用轴角作为损失参数的情况下,重建精度提高显著,平均误差降低15.1%。在使用所有损失函数后,平均误差比直接根据预测值生成重建模型的两段式重建方法降低7.0%。重建结果与UP-3D数据集进行真实性对比有显著的关节联动性效果。结论本文提出的关节旋转角值域设置对基于SMPL模型进行3维人体重建的方法在进行关节点旋转角回归的过程中起到了很大作用,重建的模型也更符合人体关节运动联动性。展开更多
文摘目的3维人体重建的目标在于建立真实可靠的3维人体模型。但目前基于SMPL(skinned multi-person linear model)模型重建3维人体的实验和一些公开数据集中,常常会出现预测的姿势角度值不符合真实人体关节角度规则的现象。针对这一问题,本文提出设置关节旋转角值域,使得重建的结果真实性更强、更符合人体关节机械结构。方法根据人体关节的联接结构将各个关节的运动进行划分。根据划分结果计算关节运动自由度,并结合实际情况提出基于SMPL模型的关节旋转值域。提出一个简单的重建方法来验证值域分析的正确性。结果使用3维人体数据集UP-3D进行相关实验,并对比以往直接根据学习结果生成重建模型的数据。在使用轴角作为损失参数的情况下,重建精度提高显著,平均误差降低15.1%。在使用所有损失函数后,平均误差比直接根据预测值生成重建模型的两段式重建方法降低7.0%。重建结果与UP-3D数据集进行真实性对比有显著的关节联动性效果。结论本文提出的关节旋转角值域设置对基于SMPL模型进行3维人体重建的方法在进行关节点旋转角回归的过程中起到了很大作用,重建的模型也更符合人体关节运动联动性。