Based on the cognitive radar concept and the basic connotation of cognitive skywave over-the-horizon radar(SWOTHR), the system structure and information processingmechanism about cognitive SWOTHR are researched. Amo...Based on the cognitive radar concept and the basic connotation of cognitive skywave over-the-horizon radar(SWOTHR), the system structure and information processingmechanism about cognitive SWOTHR are researched. Amongthem, the hybrid network system architecture which is thedistributed configuration combining with the centralized cognition and its soft/hardware framework with the sense-detectionintegration are proposed, and the information processing framebased on the lens principle and its information processing flowwith receive-transmit joint adaption are designed, which buildand parse the work law for cognition and its self feedback adjustment with the lens focus model and five stages informationprocessing sequence. After that, the system simulation andthe performance analysis and comparison are provided, whichinitially proves the rationality and advantages of the proposedideas. Finally, four important development ideas of futureSWOTHR toward "high frequency intelligence information processing system" are discussed, which are scene information fusion, dynamic reconfigurable system, hierarchical and modulardesign, and sustainable development. Then the conclusion thatthe cognitive SWOTHR can cause the performance improvement is gotten.展开更多
Recognition and correction of ionospheric phase path contamination is a vital part of the global radar signal processing sequence. A number of model-based correction algorithms have been developed to deal with the rad...Recognition and correction of ionospheric phase path contamination is a vital part of the global radar signal processing sequence. A number of model-based correction algorithms have been developed to deal with the radar performance degradation due to the ionospheric distortion and contamination. This paper addresses a novel parametric estimation and compensation method based on High-order Ambiguity Function (HAF) to solve the problem of phase path contamination of HF skywave radar signals. When signal-to-noise ratio and data sequence available satisfy the predefined conditions, the ionospheric phase path contamination may be modeled by a polynomial phase signal (PPS). As a new parametric tool for analyzing the PPS, HAF is introduced to estimate parameters of the polynomial-phase model and reconstruct the correction signal. Using the reconstructed correction signal, compensation can be performed before coherent integration so that the original echo spectrum can be restored. A piecewise scheme is proposed to track rapid variation of the phase contamination based on HAF method, and it can remove the Doppler spread effect caused by the ionosphere nonstationarity. Simulation and experimental results are given to demonstrate the efficiency of the proposed algorithm.展开更多
High frequency(HF) communication, commonly covering frequency range between 3 and 30 MHz, is an important wireless communication paradigm to offer over-thehorizon or even global communications with ranges up to thousa...High frequency(HF) communication, commonly covering frequency range between 3 and 30 MHz, is an important wireless communication paradigm to offer over-thehorizon or even global communications with ranges up to thousands of kilometers via skywave propagation with ionospheric refraction. It has widespread applications in fields such as emergency communications in disaster areas, remote communications with aircrafts or ships and non-light-of-the-sight military operations. This tutorial article overviews the history of HF communication, demystifies the recent advances, and provides a preview of the next few years, which the authors believe will see fruitful outputs towards wideband, intelligent and integrated HF communications. Specifically, we first present brief preliminaries on the unique features of HF communications to facilitate general readers in the communication community. Then, we provide a historical review to show the technical evolution on the three generations of HF communication systems. Further, we highlight the key challenges and research directions. We hope that this article will stimulate more interests in addressing the technical challenges on the research and development of future HF radio communication systems.展开更多
基金supported by the National Natural Science Foundation of China(61471391)the China Postdoctoral Science Foundation(2013M542541)
文摘Based on the cognitive radar concept and the basic connotation of cognitive skywave over-the-horizon radar(SWOTHR), the system structure and information processingmechanism about cognitive SWOTHR are researched. Amongthem, the hybrid network system architecture which is thedistributed configuration combining with the centralized cognition and its soft/hardware framework with the sense-detectionintegration are proposed, and the information processing framebased on the lens principle and its information processing flowwith receive-transmit joint adaption are designed, which buildand parse the work law for cognition and its self feedback adjustment with the lens focus model and five stages informationprocessing sequence. After that, the system simulation andthe performance analysis and comparison are provided, whichinitially proves the rationality and advantages of the proposedideas. Finally, four important development ideas of futureSWOTHR toward "high frequency intelligence information processing system" are discussed, which are scene information fusion, dynamic reconfigurable system, hierarchical and modulardesign, and sustainable development. Then the conclusion thatthe cognitive SWOTHR can cause the performance improvement is gotten.
文摘Recognition and correction of ionospheric phase path contamination is a vital part of the global radar signal processing sequence. A number of model-based correction algorithms have been developed to deal with the radar performance degradation due to the ionospheric distortion and contamination. This paper addresses a novel parametric estimation and compensation method based on High-order Ambiguity Function (HAF) to solve the problem of phase path contamination of HF skywave radar signals. When signal-to-noise ratio and data sequence available satisfy the predefined conditions, the ionospheric phase path contamination may be modeled by a polynomial phase signal (PPS). As a new parametric tool for analyzing the PPS, HAF is introduced to estimate parameters of the polynomial-phase model and reconstruct the correction signal. Using the reconstructed correction signal, compensation can be performed before coherent integration so that the original echo spectrum can be restored. A piecewise scheme is proposed to track rapid variation of the phase contamination based on HAF method, and it can remove the Doppler spread effect caused by the ionosphere nonstationarity. Simulation and experimental results are given to demonstrate the efficiency of the proposed algorithm.
基金supported by the National Natural Science Foundation of China (Grant No. 61501510)Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province (Grant No. BK20160034)+1 种基金Natural Science Foundation of Jiangsu Province (Grant No. BK20150717)China Postdoctoral Science Funded Project (Grant No. 2018T110426)
文摘High frequency(HF) communication, commonly covering frequency range between 3 and 30 MHz, is an important wireless communication paradigm to offer over-thehorizon or even global communications with ranges up to thousands of kilometers via skywave propagation with ionospheric refraction. It has widespread applications in fields such as emergency communications in disaster areas, remote communications with aircrafts or ships and non-light-of-the-sight military operations. This tutorial article overviews the history of HF communication, demystifies the recent advances, and provides a preview of the next few years, which the authors believe will see fruitful outputs towards wideband, intelligent and integrated HF communications. Specifically, we first present brief preliminaries on the unique features of HF communications to facilitate general readers in the communication community. Then, we provide a historical review to show the technical evolution on the three generations of HF communication systems. Further, we highlight the key challenges and research directions. We hope that this article will stimulate more interests in addressing the technical challenges on the research and development of future HF radio communication systems.