Based on the cognitive radar concept and the basic connotation of cognitive skywave over-the-horizon radar(SWOTHR), the system structure and information processingmechanism about cognitive SWOTHR are researched. Amo...Based on the cognitive radar concept and the basic connotation of cognitive skywave over-the-horizon radar(SWOTHR), the system structure and information processingmechanism about cognitive SWOTHR are researched. Amongthem, the hybrid network system architecture which is thedistributed configuration combining with the centralized cognition and its soft/hardware framework with the sense-detectionintegration are proposed, and the information processing framebased on the lens principle and its information processing flowwith receive-transmit joint adaption are designed, which buildand parse the work law for cognition and its self feedback adjustment with the lens focus model and five stages informationprocessing sequence. After that, the system simulation andthe performance analysis and comparison are provided, whichinitially proves the rationality and advantages of the proposedideas. Finally, four important development ideas of futureSWOTHR toward "high frequency intelligence information processing system" are discussed, which are scene information fusion, dynamic reconfigurable system, hierarchical and modulardesign, and sustainable development. Then the conclusion thatthe cognitive SWOTHR can cause the performance improvement is gotten.展开更多
Recognition and correction of ionospheric phase path contamination is a vital part of the global radar signal processing sequence. A number of model-based correction algorithms have been developed to deal with the rad...Recognition and correction of ionospheric phase path contamination is a vital part of the global radar signal processing sequence. A number of model-based correction algorithms have been developed to deal with the radar performance degradation due to the ionospheric distortion and contamination. This paper addresses a novel parametric estimation and compensation method based on High-order Ambiguity Function (HAF) to solve the problem of phase path contamination of HF skywave radar signals. When signal-to-noise ratio and data sequence available satisfy the predefined conditions, the ionospheric phase path contamination may be modeled by a polynomial phase signal (PPS). As a new parametric tool for analyzing the PPS, HAF is introduced to estimate parameters of the polynomial-phase model and reconstruct the correction signal. Using the reconstructed correction signal, compensation can be performed before coherent integration so that the original echo spectrum can be restored. A piecewise scheme is proposed to track rapid variation of the phase contamination based on HAF method, and it can remove the Doppler spread effect caused by the ionosphere nonstationarity. Simulation and experimental results are given to demonstrate the efficiency of the proposed algorithm.展开更多
This paper proposes a new method for estimating the parameter of maneuvering targets based on sparse time-frequency transform in over-the-horizon radar(OTHR). In this method, the sparse time-frequency distribution o...This paper proposes a new method for estimating the parameter of maneuvering targets based on sparse time-frequency transform in over-the-horizon radar(OTHR). In this method, the sparse time-frequency distribution of the radar echo is obtained by solving a sparse optimization problem based on the short-time Fourier transform. Then Hough transform is employed to estimate the parameter of the targets. The proposed algorithm has the following advantages: Compared with the Wigner-Hough transform method, the computational complexity of the sparse optimization is low due to the application of fast Fourier transform(FFT). And the computational cost of Hough transform is also greatly reduced because of the sparsity of the time-frequency distribution. Compared with the high order ambiguity function(HAF) method, the proposed method improves in terms of precision and robustness to noise. Simulation results show that compared with the HAF method, the required SNR and relative mean square error are 8 dB lower and 50 dB lower respectively in the proposed method. While processing the field experiment data, the execution time of Hough transform in the proposed method is only 4% of the Wigner-Hough transform method.展开更多
该文分析了天波超视距雷达(Over The Horizon Radar,OTHR)多径扩展多普勒杂波(Spread Doppler Clutter,SDC)的产生机理。由于阵列存在幅相误差且期望信号的功率大于SDC功率,自适应数字波束形成(Adaptive Digital Beam Forming,ADBF)将降...该文分析了天波超视距雷达(Over The Horizon Radar,OTHR)多径扩展多普勒杂波(Spread Doppler Clutter,SDC)的产生机理。由于阵列存在幅相误差且期望信号的功率大于SDC功率,自适应数字波束形成(Adaptive Digital Beam Forming,ADBF)将降低SDC抑制能力,同时还会导致信号对消,严重降低信噪比。针对以上问题,该文提出一种自适应抑制SDC的方法。该方法首先采用改进噪声子空间拟合自校正法消除阵列幅相误差,得到期望信号和SDC准确的到达仰角,然后采用正交投影权矢量进行ADBF处理,避免了强期望信号条件下ADBF权矢量估计不准的问题。理论分析和仿真实验表明该方法能够较彻底地抑制多径SDC。展开更多
In this paper, a multi-static system working in an active way is made up of ionospheric oblique backscatter sounding system (IOBSS) and two separate receiving stations, which adopts discontinuous wave mechanism. We ...In this paper, a multi-static system working in an active way is made up of ionospheric oblique backscatter sounding system (IOBSS) and two separate receiving stations, which adopts discontinuous wave mechanism. We have advanced a new model that contains skywave condition to locate over-the-horizon targets. We use a single quasi-parabolic (QP) ionosphere model and an analytic ray-tracing program to obtain the coordinate registration (CR) index, which changes skywave group range to ground range. Also, IOBSS and other two receiving stations use this distance information to locate the target which is far away from the system. The analytic expression for the geometric dilution of precision (GDOP) under different station deployments are obtained, which shows GDOP is influenced by the system measurement precision, the stations' coordinates, and CR index. By computer simulation, we find that GDOP of isosceles right triangle deployment is smaller than that of line deployment and location precision will be improved with increasing base line length. The results indicate that this model is practicable with an acceptable range of error (less than 500 m under certain conditions in this paper).展开更多
A two-dimensional Ohm heating theoretic model in the magnetizing ionosphere and a ray-tracing model in a discrete ionosphere background are used to analyze quantitatively the characteristics(mainly the Doppler shift a...A two-dimensional Ohm heating theoretic model in the magnetizing ionosphere and a ray-tracing model in a discrete ionosphere background are used to analyze quantitatively the characteristics(mainly the Doppler shift and the phase shift)of the over-the-horizon radar(OTHR)wave,which propagates through the ionospheric region heated by high frequency radio wave.The simulation results about the Doppler and the phase shift are obtained within two minutes after the heater is on.Preliminary conclusions are given by comparing the numerical results with experimental data.展开更多
基金supported by the National Natural Science Foundation of China(61471391)the China Postdoctoral Science Foundation(2013M542541)
文摘Based on the cognitive radar concept and the basic connotation of cognitive skywave over-the-horizon radar(SWOTHR), the system structure and information processingmechanism about cognitive SWOTHR are researched. Amongthem, the hybrid network system architecture which is thedistributed configuration combining with the centralized cognition and its soft/hardware framework with the sense-detectionintegration are proposed, and the information processing framebased on the lens principle and its information processing flowwith receive-transmit joint adaption are designed, which buildand parse the work law for cognition and its self feedback adjustment with the lens focus model and five stages informationprocessing sequence. After that, the system simulation andthe performance analysis and comparison are provided, whichinitially proves the rationality and advantages of the proposedideas. Finally, four important development ideas of futureSWOTHR toward "high frequency intelligence information processing system" are discussed, which are scene information fusion, dynamic reconfigurable system, hierarchical and modulardesign, and sustainable development. Then the conclusion thatthe cognitive SWOTHR can cause the performance improvement is gotten.
文摘Recognition and correction of ionospheric phase path contamination is a vital part of the global radar signal processing sequence. A number of model-based correction algorithms have been developed to deal with the radar performance degradation due to the ionospheric distortion and contamination. This paper addresses a novel parametric estimation and compensation method based on High-order Ambiguity Function (HAF) to solve the problem of phase path contamination of HF skywave radar signals. When signal-to-noise ratio and data sequence available satisfy the predefined conditions, the ionospheric phase path contamination may be modeled by a polynomial phase signal (PPS). As a new parametric tool for analyzing the PPS, HAF is introduced to estimate parameters of the polynomial-phase model and reconstruct the correction signal. Using the reconstructed correction signal, compensation can be performed before coherent integration so that the original echo spectrum can be restored. A piecewise scheme is proposed to track rapid variation of the phase contamination based on HAF method, and it can remove the Doppler spread effect caused by the ionosphere nonstationarity. Simulation and experimental results are given to demonstrate the efficiency of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(611011726137118461301262)
文摘This paper proposes a new method for estimating the parameter of maneuvering targets based on sparse time-frequency transform in over-the-horizon radar(OTHR). In this method, the sparse time-frequency distribution of the radar echo is obtained by solving a sparse optimization problem based on the short-time Fourier transform. Then Hough transform is employed to estimate the parameter of the targets. The proposed algorithm has the following advantages: Compared with the Wigner-Hough transform method, the computational complexity of the sparse optimization is low due to the application of fast Fourier transform(FFT). And the computational cost of Hough transform is also greatly reduced because of the sparsity of the time-frequency distribution. Compared with the high order ambiguity function(HAF) method, the proposed method improves in terms of precision and robustness to noise. Simulation results show that compared with the HAF method, the required SNR and relative mean square error are 8 dB lower and 50 dB lower respectively in the proposed method. While processing the field experiment data, the execution time of Hough transform in the proposed method is only 4% of the Wigner-Hough transform method.
文摘该文分析了天波超视距雷达(Over The Horizon Radar,OTHR)多径扩展多普勒杂波(Spread Doppler Clutter,SDC)的产生机理。由于阵列存在幅相误差且期望信号的功率大于SDC功率,自适应数字波束形成(Adaptive Digital Beam Forming,ADBF)将降低SDC抑制能力,同时还会导致信号对消,严重降低信噪比。针对以上问题,该文提出一种自适应抑制SDC的方法。该方法首先采用改进噪声子空间拟合自校正法消除阵列幅相误差,得到期望信号和SDC准确的到达仰角,然后采用正交投影权矢量进行ADBF处理,避免了强期望信号条件下ADBF权矢量估计不准的问题。理论分析和仿真实验表明该方法能够较彻底地抑制多径SDC。
基金Supported by the National High Technology Research and Development Program of China (863 Program) (2009AAXXX1302)
文摘In this paper, a multi-static system working in an active way is made up of ionospheric oblique backscatter sounding system (IOBSS) and two separate receiving stations, which adopts discontinuous wave mechanism. We have advanced a new model that contains skywave condition to locate over-the-horizon targets. We use a single quasi-parabolic (QP) ionosphere model and an analytic ray-tracing program to obtain the coordinate registration (CR) index, which changes skywave group range to ground range. Also, IOBSS and other two receiving stations use this distance information to locate the target which is far away from the system. The analytic expression for the geometric dilution of precision (GDOP) under different station deployments are obtained, which shows GDOP is influenced by the system measurement precision, the stations' coordinates, and CR index. By computer simulation, we find that GDOP of isosceles right triangle deployment is smaller than that of line deployment and location precision will be improved with increasing base line length. The results indicate that this model is practicable with an acceptable range of error (less than 500 m under certain conditions in this paper).
文摘A two-dimensional Ohm heating theoretic model in the magnetizing ionosphere and a ray-tracing model in a discrete ionosphere background are used to analyze quantitatively the characteristics(mainly the Doppler shift and the phase shift)of the over-the-horizon radar(OTHR)wave,which propagates through the ionospheric region heated by high frequency radio wave.The simulation results about the Doppler and the phase shift are obtained within two minutes after the heater is on.Preliminary conclusions are given by comparing the numerical results with experimental data.