Vigorous and continued efforts by researchers and engineers have contributed towards maintaining environmental sustainability through the utilization of waste materials in civil engineering applications as an alternat...Vigorous and continued efforts by researchers and engineers have contributed towards maintaining environmental sustainability through the utilization of waste materials in civil engineering applications as an alternative to natural sources.In this study,granite aggregates in asphaltic mixes were replaced by electric arc furnace(EAF)steel slag aggregates with different proportions to identify the best combination in terms of superior performance.Asphalt mixtures showing the best performance were further reinforced with polyvinyl alcohol(PVA),acrylic,and polyester fibers at the dosages of 0.05%,0.15%,and 0.3%by weight of the aggregates.The performance tests of this study were resilient modulus,moisture susceptibility,and indirect tensile fatigue cracking test.The findings of this study revealed that the asphalt mixtures containing coarse steel slag aggregate exhibited the best performance in comparison with the other substitutions.Moreover,the reinforced asphalt mixtures with synthetic fibers at the content of 0.05%exhibited an almost comparable performance to the unreinforced asphalt mixtures.Modifying the asphalt mixtures with PVA,acrylic,and polyester fibers at the proportion of 0.15%have improved the fatigue cracking resistance by 41.13%,29.87%,and 18.97%,respectively.Also,the fiber-modified asphalt mixtures with PVA,acrylic,and polyester have enhanced the fatigue cracking resistance by about 57%,44%,and 39%,respectively.The results of the resilient modulus demonstrated that as the fiber content increase,the resilient modulus of the reinforced asphalt mixtures decreases.Therefore,introducing synthetic fibers at the content of 0.3%has slightly decreased the resilient modulus in comparison with unreinforced mixtures.On the other hand,the results of the mechanisticempirical pavement design showed that the reinforced asphalt mixes with a high content of synthetic fibers have shown lower service life than the control mixes due to the low resilient modulus.On the contrary,based on the laboratory results,the asphalt mixes incorporating PVA,acrylic,and polyester fibers at the proportion of 0.15%have shown the potential to reduce the thickness of the asphalt layer by about 14.9%,11.80%,and 8.70%,respectively.展开更多
The influence of air-cooled blast furnace slag aggregates as replacement of natural aggregates on the water absorption of concrete and mortar was studied, and the mechanism was analyzed. The interface between aggregat...The influence of air-cooled blast furnace slag aggregates as replacement of natural aggregates on the water absorption of concrete and mortar was studied, and the mechanism was analyzed. The interface between aggregate and matrix in concrete was analyzed by using a micro-hardness tester, a laser confocal microscope and a scanning electron microscope with backscattered electron image mode. The pore structure of mortar matrixes under different curing conditions was investigated by mercury intrusion porosimetry. The results showed that when natural aggregates were replaced with air-cooled blast furnace slag aggregates in mortar or concrete, the content of the capillary pore in the mortar matrix was reduced and the interfacial structure between aggregate and matrix was improved, resulting in the lower water absorption of mortar or concrete. Compared to the concrete made with crushed limestone and natural river sand, the initial absorption coefficient, the secondary absorption coefficient and the water absorption capacity through the surface for 7 d of the concrete made from crushed air-cooled blast furnace slag and air-cooled blast furnace slag sand were reduced by 48.9%, 52.8%, and 46.5%, respectively.展开更多
Stainless steel melting shops of Outokumpu Group are located in Finland,Sweden and England(UK). In all of the countries the European Union legislation is the same,but in practice the plants face different technical,ec...Stainless steel melting shops of Outokumpu Group are located in Finland,Sweden and England(UK). In all of the countries the European Union legislation is the same,but in practice the plants face different technical,economical and administrative challenges in developing sustainable treatments and use of by-products. Due to availability of good natural construction materials,the use of slag and other industrial by-products has been quite small in Northern Europe.Blast furnace slag has been completely utilized,while slag from stainless steel processes has earlier been regarded as waste.Steering of the metallurgical melt phase,slag cooling,treatment and metal recovery processes are the main technical challenges for increasing the sustainable use of stainless steel slag. Moreover,product properties have to fulfill standards and customer requirements.Dry or water-cooled EAF slag aggregates are typically used in road construction.Outokumpu has developed light mineral slag aggregates which are cooled in rapid water process.During this process,a specific structure and mineralogy is formed in the slag and leaching from the material decreases.In many regulatory discussions,it seems that there is not enough relevant scientific data from harmful compounds.Limit values are based only on laboratory tests and model estimations,not on the material use itself or real nature.A risk-based approach is needed when environmental acceptance is not clear.Limit values based on content are not applicable because environmental or health risks depend on the release or leaching of substances from the material.This is the case especially with metals.展开更多
基金This work was supported by Universiti Tenaga Nasional(UNITEN)through BOLD Refresh Publication Fund 2021 under Grant J5100D4103-BOLDREFRESH2025-CENTRE OF EXCELLENCE.
文摘Vigorous and continued efforts by researchers and engineers have contributed towards maintaining environmental sustainability through the utilization of waste materials in civil engineering applications as an alternative to natural sources.In this study,granite aggregates in asphaltic mixes were replaced by electric arc furnace(EAF)steel slag aggregates with different proportions to identify the best combination in terms of superior performance.Asphalt mixtures showing the best performance were further reinforced with polyvinyl alcohol(PVA),acrylic,and polyester fibers at the dosages of 0.05%,0.15%,and 0.3%by weight of the aggregates.The performance tests of this study were resilient modulus,moisture susceptibility,and indirect tensile fatigue cracking test.The findings of this study revealed that the asphalt mixtures containing coarse steel slag aggregate exhibited the best performance in comparison with the other substitutions.Moreover,the reinforced asphalt mixtures with synthetic fibers at the content of 0.05%exhibited an almost comparable performance to the unreinforced asphalt mixtures.Modifying the asphalt mixtures with PVA,acrylic,and polyester fibers at the proportion of 0.15%have improved the fatigue cracking resistance by 41.13%,29.87%,and 18.97%,respectively.Also,the fiber-modified asphalt mixtures with PVA,acrylic,and polyester have enhanced the fatigue cracking resistance by about 57%,44%,and 39%,respectively.The results of the resilient modulus demonstrated that as the fiber content increase,the resilient modulus of the reinforced asphalt mixtures decreases.Therefore,introducing synthetic fibers at the content of 0.3%has slightly decreased the resilient modulus in comparison with unreinforced mixtures.On the other hand,the results of the mechanisticempirical pavement design showed that the reinforced asphalt mixes with a high content of synthetic fibers have shown lower service life than the control mixes due to the low resilient modulus.On the contrary,based on the laboratory results,the asphalt mixes incorporating PVA,acrylic,and polyester fibers at the proportion of 0.15%have shown the potential to reduce the thickness of the asphalt layer by about 14.9%,11.80%,and 8.70%,respectively.
基金Funded by the National Natural Science Foundation of China(Nos.51778003 and 51308004)the Project of Anhui Provincial Education Department for Sending Visiting Scholars to Research Abroad(No.gxfx ZD2016134)+1 种基金the Anhui Province Higher Education Revitalization Program Talent Project([2014]No.11)the National Key Research and Development Plan(No.2017YFB0310001)
文摘The influence of air-cooled blast furnace slag aggregates as replacement of natural aggregates on the water absorption of concrete and mortar was studied, and the mechanism was analyzed. The interface between aggregate and matrix in concrete was analyzed by using a micro-hardness tester, a laser confocal microscope and a scanning electron microscope with backscattered electron image mode. The pore structure of mortar matrixes under different curing conditions was investigated by mercury intrusion porosimetry. The results showed that when natural aggregates were replaced with air-cooled blast furnace slag aggregates in mortar or concrete, the content of the capillary pore in the mortar matrix was reduced and the interfacial structure between aggregate and matrix was improved, resulting in the lower water absorption of mortar or concrete. Compared to the concrete made with crushed limestone and natural river sand, the initial absorption coefficient, the secondary absorption coefficient and the water absorption capacity through the surface for 7 d of the concrete made from crushed air-cooled blast furnace slag and air-cooled blast furnace slag sand were reduced by 48.9%, 52.8%, and 46.5%, respectively.
文摘Stainless steel melting shops of Outokumpu Group are located in Finland,Sweden and England(UK). In all of the countries the European Union legislation is the same,but in practice the plants face different technical,economical and administrative challenges in developing sustainable treatments and use of by-products. Due to availability of good natural construction materials,the use of slag and other industrial by-products has been quite small in Northern Europe.Blast furnace slag has been completely utilized,while slag from stainless steel processes has earlier been regarded as waste.Steering of the metallurgical melt phase,slag cooling,treatment and metal recovery processes are the main technical challenges for increasing the sustainable use of stainless steel slag. Moreover,product properties have to fulfill standards and customer requirements.Dry or water-cooled EAF slag aggregates are typically used in road construction.Outokumpu has developed light mineral slag aggregates which are cooled in rapid water process.During this process,a specific structure and mineralogy is formed in the slag and leaching from the material decreases.In many regulatory discussions,it seems that there is not enough relevant scientific data from harmful compounds.Limit values are based only on laboratory tests and model estimations,not on the material use itself or real nature.A risk-based approach is needed when environmental acceptance is not clear.Limit values based on content are not applicable because environmental or health risks depend on the release or leaching of substances from the material.This is the case especially with metals.