The effects of helium (He) on the sliding and mechanical properties of a vanadium (V) E5(310)/[001] grain boundary (GB) have been investigated using a first-principles method. It has been found that He was ene...The effects of helium (He) on the sliding and mechanical properties of a vanadium (V) E5(310)/[001] grain boundary (GB) have been investigated using a first-principles method. It has been found that He was energetically favorable sitting at the GB region with a segregation energy of -0.27 eV, which was attributed to the special atomic configurations and charge density distributions of the GB. The maximal sliding energy barrier of the He-doped GB was calculated to be 1.73 J/m^2, 35% larger than that of the clean GB. This suggested that the presence of He would hinder the V GB mobility. Based on the thermodynamic criterion, the total energy calculations indicated that the embrittlement of V GB would be enhanced by He segregation.展开更多
An adequate hardness of MoS2/Cu composites has not been achieved if these materials are applied under the extreme wear conditions. Therefore, Me-reinforced MoS2/Cu composites were prepared by powder metallurgy (P/M)...An adequate hardness of MoS2/Cu composites has not been achieved if these materials are applied under the extreme wear conditions. Therefore, Me-reinforced MoS2/Cu composites were prepared by powder metallurgy (P/M) methods. The electrical sliding wear properties in the absence or presence of Mereinforced MoS2/Cu composites were tested by HST-100 high speed electric-tribometer. The hardness, electrical conductivity, density, and microstmcture of MoS2/Cu composites were observed. Me-reinforcement MoS2/Cu composites are of good electrical conductivity, while the hardness of Mo-reinforcedment MoS2/Cu composites is about 33.3% higher than that of MoS2/Cu composites. With the addition of Me, composites show better wear properties under high speed and large electric current due to the improvement of hardness. The effects of current intensity and sliding velocity on the wear properties of the tested materials are complicated, and the wear mechanisms of MoS2/Cu composites are mainly abrasive wear and adhesive wear with arc erosion.展开更多
基金Project supported by the National Magnetic Confinement Fusion Program of China(Grant No.2013GB109002)
文摘The effects of helium (He) on the sliding and mechanical properties of a vanadium (V) E5(310)/[001] grain boundary (GB) have been investigated using a first-principles method. It has been found that He was energetically favorable sitting at the GB region with a segregation energy of -0.27 eV, which was attributed to the special atomic configurations and charge density distributions of the GB. The maximal sliding energy barrier of the He-doped GB was calculated to be 1.73 J/m^2, 35% larger than that of the clean GB. This suggested that the presence of He would hinder the V GB mobility. Based on the thermodynamic criterion, the total energy calculations indicated that the embrittlement of V GB would be enhanced by He segregation.
基金Funded by the National Natural Science Foundation of China(No:51371077)Non-ferrous Metal Generic Technology of Henan Collaborative Innovation Center
文摘An adequate hardness of MoS2/Cu composites has not been achieved if these materials are applied under the extreme wear conditions. Therefore, Me-reinforced MoS2/Cu composites were prepared by powder metallurgy (P/M) methods. The electrical sliding wear properties in the absence or presence of Mereinforced MoS2/Cu composites were tested by HST-100 high speed electric-tribometer. The hardness, electrical conductivity, density, and microstmcture of MoS2/Cu composites were observed. Me-reinforcement MoS2/Cu composites are of good electrical conductivity, while the hardness of Mo-reinforcedment MoS2/Cu composites is about 33.3% higher than that of MoS2/Cu composites. With the addition of Me, composites show better wear properties under high speed and large electric current due to the improvement of hardness. The effects of current intensity and sliding velocity on the wear properties of the tested materials are complicated, and the wear mechanisms of MoS2/Cu composites are mainly abrasive wear and adhesive wear with arc erosion.