To accurately predict impact loads can ensure the safe operation of debris flow control projects.The instantaneous impact process is usually considered in the calculation of the debris flow impact force;however,the re...To accurately predict impact loads can ensure the safe operation of debris flow control projects.The instantaneous impact process is usually considered in the calculation of the debris flow impact force;however,the redistribution of an impact load after structural regulation is unclear.In this study we deduced the theoretical calculation of a debris flow impact on a double-row slit dam,and carried out a verification experiment on the debris flow impact.The calculation model considers the influence of the debris flow properties,dam arrangement and pile material.The results show that the impact force of the debris flow is obviously affected by the bulk density.When the bulk density is 21 kg/m^(3),the maximum impact force on the pile dam is 1.15 times that when the bulk density is 15 kg/m^(3),but the time it takes for the debris flow to pass through the dam body is reduced by 60%.The larger the relative pile spacing,the more sufficient the flow space and the lower the maximum impact force.The maximum impact force of relative pile spacing of 0.8 is 12%less than that of elative pile spacing of 0.5.The horizontal distribution of the impact force in the mud depth range is parabolic.The maximum impact force on the centre pier is 1.3 times that of a side pier,and the maximum impact force on the dam body appears at the top of the mud depth range.From the vertical distribution of the impact force,the maximum impact force at the highest mud mark is approximately 70%of that of the bottom.With the increase in the relative pile spacing,the longitudinal maximum impact force distribution first decreases and then increases.展开更多
This paper describes an experimental work in order to assess the efficiency of slit dam on non-viscous debris flow. Some results have been acquired as follows: (1) there are three kinds of blocking type; Total-bloc...This paper describes an experimental work in order to assess the efficiency of slit dam on non-viscous debris flow. Some results have been acquired as follows: (1) there are three kinds of blocking type; Total-blocking, opening and part-blocking. The blocking conditions of slit dam are closely link to b/dmax (the ratio of slit width to maximum diameter of solid matter), as b/dmax is less than 0. 739, the slit dam is total- blocking; and b/dmax is more than 1. 478, the slit dam will be opening; whereas b/dma ranges from 0. 739 to 1. 478, the slit dam is part-blocking. (2) Variation of the mean density passing through slit dam is the most obvious as b/dmax ranges from 0. 739 to 1. 232. (2) According to experimental results, slit dams have been shown to be effective in reducing debris flow density while slit density ∑ b/B (B is slit dam width) ranges from 0.2 to 0. 5.展开更多
Debris flow can cause serious damage,and it is a part of the study of fluid-structure interaction(FSI).FSI analysis was established on the interaction between unsteady flow and the slit-trap dam's vibration,with a...Debris flow can cause serious damage,and it is a part of the study of fluid-structure interaction(FSI).FSI analysis was established on the interaction between unsteady flow and the slit-trap dam's vibration,with a coupling bench which can transfer fluid pressure and structure displacement.Debris flow can be seen as the Bingham body of incompressible.Based on ANSYS and CFX softwares,unidirectional and bidirectional coupling methods were used to study the transient interaction between debris flow and dam.The comparison between lateral fluid pressure states under different velocities and the equivalent stresses of the dam under different coupling conditions was made.The result shows that fluid-structure coupling becomes stronger with the increase of flow velocity.The maximum equivalent stress appears at the dam foundation,while the minimum equivalent stress appears at the dam abutment.With the increase of height,the fluid pressure decreases.The fluid pressure based on unidirectional FSI analysis is larger than that based on bidirectional FSI analysis and the maximum appears on the joint of the dam foundation and channel.The maximum equivalent stress of the dam based on the former is less than that based on the latter.展开更多
基金funded by the Second Scientific Expedition to Qinghai-Tibet Plateau (Grant No.2019QZKK0902)the National Natural Science Foundation of China (Grant No.42201095)+2 种基金the Natural Science Foundation of Sichuan (Grant No.2022NSFSC1032)the Sichuan Provincial Transportation Science and Technology Project (2021-A-08)the Key science and technology projects of transportation industry (2021-MS4-104)
文摘To accurately predict impact loads can ensure the safe operation of debris flow control projects.The instantaneous impact process is usually considered in the calculation of the debris flow impact force;however,the redistribution of an impact load after structural regulation is unclear.In this study we deduced the theoretical calculation of a debris flow impact on a double-row slit dam,and carried out a verification experiment on the debris flow impact.The calculation model considers the influence of the debris flow properties,dam arrangement and pile material.The results show that the impact force of the debris flow is obviously affected by the bulk density.When the bulk density is 21 kg/m^(3),the maximum impact force on the pile dam is 1.15 times that when the bulk density is 15 kg/m^(3),but the time it takes for the debris flow to pass through the dam body is reduced by 60%.The larger the relative pile spacing,the more sufficient the flow space and the lower the maximum impact force.The maximum impact force of relative pile spacing of 0.8 is 12%less than that of elative pile spacing of 0.5.The horizontal distribution of the impact force in the mud depth range is parabolic.The maximum impact force on the centre pier is 1.3 times that of a side pier,and the maximum impact force on the dam body appears at the top of the mud depth range.From the vertical distribution of the impact force,the maximum impact force at the highest mud mark is approximately 70%of that of the bottom.With the increase in the relative pile spacing,the longitudinal maximum impact force distribution first decreases and then increases.
文摘This paper describes an experimental work in order to assess the efficiency of slit dam on non-viscous debris flow. Some results have been acquired as follows: (1) there are three kinds of blocking type; Total-blocking, opening and part-blocking. The blocking conditions of slit dam are closely link to b/dmax (the ratio of slit width to maximum diameter of solid matter), as b/dmax is less than 0. 739, the slit dam is total- blocking; and b/dmax is more than 1. 478, the slit dam will be opening; whereas b/dma ranges from 0. 739 to 1. 478, the slit dam is part-blocking. (2) Variation of the mean density passing through slit dam is the most obvious as b/dmax ranges from 0. 739 to 1. 232. (2) According to experimental results, slit dams have been shown to be effective in reducing debris flow density while slit density ∑ b/B (B is slit dam width) ranges from 0.2 to 0. 5.
基金Science and Technology Support Program,China(No.2014BAL05B01)Project of Institute of Mountain Hazards and Environment of Chinese Academy of Sciences,China(No.KZZD-EW-Q5-Q1)
文摘Debris flow can cause serious damage,and it is a part of the study of fluid-structure interaction(FSI).FSI analysis was established on the interaction between unsteady flow and the slit-trap dam's vibration,with a coupling bench which can transfer fluid pressure and structure displacement.Debris flow can be seen as the Bingham body of incompressible.Based on ANSYS and CFX softwares,unidirectional and bidirectional coupling methods were used to study the transient interaction between debris flow and dam.The comparison between lateral fluid pressure states under different velocities and the equivalent stresses of the dam under different coupling conditions was made.The result shows that fluid-structure coupling becomes stronger with the increase of flow velocity.The maximum equivalent stress appears at the dam foundation,while the minimum equivalent stress appears at the dam abutment.With the increase of height,the fluid pressure decreases.The fluid pressure based on unidirectional FSI analysis is larger than that based on bidirectional FSI analysis and the maximum appears on the joint of the dam foundation and channel.The maximum equivalent stress of the dam based on the former is less than that based on the latter.