[Objectives]To monitor the stability of open-pit coal mine slopes in real time and ensure the safety of coal mine production.[Methods]The automatic monitoring system of coal mine slope was explored in depth,and the co...[Objectives]To monitor the stability of open-pit coal mine slopes in real time and ensure the safety of coal mine production.[Methods]The automatic monitoring system of coal mine slope was explored in depth,and the core functions of the system were designed comprehensively.According to the design function of the automatic monitoring system,the slope automatic monitoring system was constructed.Besides,in accordance with the actual situation of the slope,the monitoring frequency of slopes was set scientifically,and the key indicators such as rainfall,deep displacement and surface displacement of the slopes were monitored in an all-round and multi-angle way.[Results]During the monitoring period,the overall condition of the slope remained good,and no landslides or other geological disasters occurred.At the same time,the overall rainfall in the slope area remained low.In terms of monitoring data,the horizontal displacement and settlement of the slopes increased first and then tended to be stable.Specifically,the maximum horizontal displacement during the monitoring period was 22.74 mm,while the maximum settlement was 18.65 mm.[Conclusions]The automatic slope monitoring system has obtained remarkable achievements in practical application.It not only improves the accuracy and efficiency of slope stability monitoring,but also provides valuable reference experience for similar projects.展开更多
This study makes a significant progress in addressing the challenges of short-term slope displacement prediction in the Universal Landslide Monitoring Program,an unprecedented disaster mitigation program in China,wher...This study makes a significant progress in addressing the challenges of short-term slope displacement prediction in the Universal Landslide Monitoring Program,an unprecedented disaster mitigation program in China,where lots of newly established monitoring slopes lack sufficient historical deformation data,making it difficult to extract deformation patterns and provide effective predictions which plays a crucial role in the early warning and forecasting of landslide hazards.A slope displacement prediction method based on transfer learning is therefore proposed.Initially,the method transfers the deformation patterns learned from slopes with relatively rich deformation data by a pre-trained model based on a multi-slope integrated dataset to newly established monitoring slopes with limited or even no useful data,thus enabling rapid and efficient predictions for these slopes.Subsequently,as time goes on and monitoring data accumulates,fine-tuning of the pre-trained model for individual slopes can further improve prediction accuracy,enabling continuous optimization of prediction results.A case study indicates that,after being trained on a multi-slope integrated dataset,the TCN-Transformer model can efficiently serve as a pretrained model for displacement prediction at newly established monitoring slopes.The three-day average RMSE is significantly reduced by 34.6%compared to models trained only on individual slope data,and it also successfully predicts the majority of deformation peaks.The fine-tuned model based on accumulated data on the target newly established monitoring slope further reduced the three-day RMSE by 37.2%,demonstrating a considerable predictive accuracy.In conclusion,taking advantage of transfer learning,the proposed slope displacement prediction method effectively utilizes the available data,which enables the rapid deployment and continual refinement of displacement predictions on newly established monitoring slopes.展开更多
New sensing and wireless technologies generate massive data. This paper proposes an efficient Bayesian network to evaluate the slope safety using large-quantity field monitoring information with underlying physical me...New sensing and wireless technologies generate massive data. This paper proposes an efficient Bayesian network to evaluate the slope safety using large-quantity field monitoring information with underlying physical mechanisms. A Bayesian network for a slope involving correlated material properties and dozens of observational points is constructed.展开更多
For high-steep slopes in hydropower engineering, damage can be induced or accumulated due to a seriesof human or natural activities, including excavation, dam construction, earthquake, rainstorm, rapid riseor drop of ...For high-steep slopes in hydropower engineering, damage can be induced or accumulated due to a seriesof human or natural activities, including excavation, dam construction, earthquake, rainstorm, rapid riseor drop of water level in the service lifetime of slopes. According to the concept that the progressivedamage (microseismicity) of rock slope is the essence of the precursor of slope instability, a microseismicmonitoring system for high-steep rock slopes is established. Positioning accuracy of the monitoringsystem is tested by fixed-position blasting method. Based on waveform and cluster analyses of microseismicevents recorded during test, the tempo-spatial distribution of microseismic events is analyzed.The deformation zone in the deep rock masses induced by the microseismic events is preliminarilydelimited. Based on the physical information measured by in situ microseismic monitoring, an evaluationmethod for the dynamic stability of rock slopes is proposed and preliminarily implemented bycombining microseismic monitoring and numerical modeling. Based on the rock mass damage modelobtained by back analysis of microseismic information, the rock mass elements within the microseismicdamage zone are automatically searched by finite element program. Then the stiffness and strengthreductions are performed on these damaged elements accordingly. Attempts are made to establish thecorrelation between microseismic event, strength deterioration and slope dynamic instability, so as toquantitatively evaluate the dynamic stability of slope. The case studies about two practical slopes indicatethat the proposed method can reflect the factor of safety of rock slope more objectively. Numericalanalysis can help to understand the characteristics and modes of the monitored microseismic events inrock slopes. Microseismic monitoring data and simulation results can be used to mutually modify thesensitive rock parameters and calibrate the model. Combination of microseismic monitoring and numericalsimulation provides a more objective basis for the numerical model and parameters and a solidmechanical foundation for the microseismic monitoring.展开更多
In order to improve the understanding of the fundamental mechanism of rainfall infiltration induced landslides in accumulation slope and to clarify some important characteristics of slope performance,artificial rainfa...In order to improve the understanding of the fundamental mechanism of rainfall infiltration induced landslides in accumulation slope and to clarify some important characteristics of slope performance,artificial rainfall simulation tests and field synthetic monitoring were carried out on a typical accumulation slope of Shangrui Freeway in Guizhou Province,China.The monitoring results show that the most accumulation landslides caused by rainfall infiltration are shallow relaxation failure,whose deformation zone lies within the top 0-4 m soil layer.The deformation of slope gradually reduces from the surface,where the greatest deformation lies in,to the deep part of slope.The average percentage of infiltration during the first 2 h is 86%,and then it reduces gradually with time because of the increase of the surface runoff.The average percentage of infiltration drop to a relatively stable value(50%)after 6 h.Rainfall infiltration causes obvious increase of pore-water pressure,which may result in a reduction of shear strength due to a decrease in effective stress and wetting-induced softening.The double-effect of rainfall infiltration is the main reason of rainfall infiltration induced landslides in accumulation slope.展开更多
A type of velocity sensor CD 1, an auto recording instrument on blasting vibration YBJ 1 and a random signal and vibration analysis system (CRAS) were used to monitor the particle vibration induced by blasting at open...A type of velocity sensor CD 1, an auto recording instrument on blasting vibration YBJ 1 and a random signal and vibration analysis system (CRAS) were used to monitor the particle vibration induced by blasting at open pit slope in Hainan Iron Mine. The attenuating rules of blasting ground vibration on slope were developed. By means of the analysis and calculation of the blasting vibration data at open pit slope and the vertical particle vibration velocity assessment method based on the concept of vibration strength, the empirical attenuating equations which can be used for predicting and estimating the damage of slope were derived.展开更多
In the discipline of geotechnical engineering, fiber optic sensor based distributed monitoring has played an increasingly important role over the past few decades. Compared with conventional sensors, fiber optic senso...In the discipline of geotechnical engineering, fiber optic sensor based distributed monitoring has played an increasingly important role over the past few decades. Compared with conventional sensors, fiber optic sensors have a variety of exclusive advantages, such as smaller size, higher precision, and better corrosion resistance. These innovative monitoring technologies have been successfully applied for performance monitoring of geo-structures and early warning of potential geo- hazards around the world. In order to investigate their ability to monitor slope stability problems, a medium-sized model of soil nailed slope has been constructed in laboratory. The fully distributed Brillouin optical time-domain analysis (BOTDA) sensing technology was employed to measure the horizontal strain distributions inside the model slope. During model construction, a specially designed strain sensing fiber was buried in the soil mass. Afterward, the surcharge loading was applied on the slope crest in stages using hydraulic jacks and a reaction frame. During testing, an NBX-6o5o BOTDA sensing interrogator was used to collect the fiber optic sensing data. The test results have been analyzed in detail, which shows that the fiber optic sensors can capture the progressive deformation and failure pattern of the model slope. The limit equilibrium analyses were also conducted to obtain the factors ofsafety of the slope under different surface loadings. It is found that the characteristic maximum strains can reflect the stability of the model slope and an empirical relationship was obtained, This study verified the effectiveness of the distributed BOTDA sensing technology in performance monitoring of slope.展开更多
Previous investigations have shown that the seismic response of slopes during the Wenchuan earthquake was highly variable. The present study tries to give an answer to the question: Which are the main factors affecti...Previous investigations have shown that the seismic response of slopes during the Wenchuan earthquake was highly variable. The present study tries to give an answer to the question: Which are the main factors affecting the seismic response degree of slopes? With the support of the China Geological Survey Bureau, we set 3 monitoring sections in Jiulong slope, Mianzhu city, China with the aim to record the site response of the slope during the affershoeks of the Wenehuan earthquake. After the Wenchuan earthquake, which happened on 12 May 2008, 30 aftershocks have been recorded in these monitoring points. We analyzed 11 records, with magnitudes ranging from ML = 4.6 to ML = 3.1. The amplification factors of the horizontal compound PGA and 3D compound PGA have been determined for the 3 points at different elevations on the slope. Results showed that the dynamic response of the slope on the earthquake was controlled by factors such as topography and the thickness of the Quaternary overburden.展开更多
The construction of the double-lane five-step ship lock of the Three Gorges Project (TGP) wascommenced in 1994, the excavation of the ship lock was completed by the end of 1999, and the ship lockwas put in operation...The construction of the double-lane five-step ship lock of the Three Gorges Project (TGP) wascommenced in 1994, the excavation of the ship lock was completed by the end of 1999, and the ship lockwas put in operation in June 2003. The side slopes of the ship lock are characterized by great height(170 m), steepness (70 m in height of upright slope), and great length (over 7000 m in total length). Inassociation with the ship lock, the surrounding rocks in slope have a high potential to deform, withwhich the magnitude of deformation is restricted. Monitoring results show that the deformation of thefive-step ship lock high slopes of the TGP primarily occurred in excavation period, and deformationtended to be stable and convergent during operation period, suggesting the allowable ranges of deformation.At present, the slopes and lock chambers are stable, and the ship lock works well under normaloperation condition, enabling the social and economic benefits of the TGP. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
An ILRIS-36D 3-D laser image scanning system was used to monitor the Anjialing strip mine slope on Pingshuo in Shanxi province. The basic working principles, performance indexes, features and data collection and proce...An ILRIS-36D 3-D laser image scanning system was used to monitor the Anjialing strip mine slope on Pingshuo in Shanxi province. The basic working principles, performance indexes, features and data collection and processing methods are illus-trated. The point cloud results are analyzed in detail. The rescale range analysis method was used to analyze the deformation char-acteristics of the slope. The results show that the trend of slope displacement is stable and that the degree of landslide danger is low. This work indicates that 3-D laser image scanning can supply multi-parameter, high precision real time data over long distances. These data can be used to study the distortion of the slope quickly and accurately.展开更多
Radar slope monitoring is now widely used across the world, for example, the slope stability radar(SSR)and the movement and surveying radar(MSR) are currently in use in many mines around the world.However, to fully re...Radar slope monitoring is now widely used across the world, for example, the slope stability radar(SSR)and the movement and surveying radar(MSR) are currently in use in many mines around the world.However, to fully realize the effectiveness of this radar in notifying mine personnel of an impending slope failure, a method that can confidently predict the time of failure is necessary. The model developed in this study is based on the inverse velocity method pioneered by Fukuzono in 1985. The model named the slope failure prediction model(SFPM) was validated with the displacement data from two slope failures monitored with the MSR. The model was found to be very effective in predicting the time to failure while providing adequate evacuation time once the progressive displacement stage is reached.展开更多
A landslide always results from a progressive process of slope deformation. In recent years, an increasing number of slope instabilities have occurred with regard to human engineering activities such as hydropower or ...A landslide always results from a progressive process of slope deformation. In recent years, an increasing number of slope instabilities have occurred with regard to human engineering activities such as hydropower or traffic construction in mountainous area, which cause even greater casualties and economic loss compared with the natural hazards. The development of such earth surface process may hold long period with mechanisms still not fully understood. Using monitoring technology is an effective and intuitive approach to assist analyzing the slope deformation process and their driving factors. This study presents an engineering slope excavated during the construction of Changheba Hydropower Station, which is located in the upper reaches of Dadu River, Sichuan Province, southwest China. The engineering slope experienced and featured a five-year continuous deformation which caused continuous high risks to the engineering activities. We conducted in-depth analysis for such a long-term deformation process based on ground and subsurface monitoring data, collected successive data with a series of monitoring equipment such as automated total station, borehole inclinometers and other auxiliary apparatus, and identified the deformation process based on the comprehensive analysis of monitoring data as well as field investigation. After analyzing the effects of engineering activities and natural factors on the continuous deformation, we found that the overburden strata provided deformable mass while the excavation-produced steep terrain initiated the slope deformation in limit equilibrium state over a long period of time;afterwards, the intense rainwater accelerated slope deformation in the rainy season.展开更多
Monitoring the stability of steep slopes of open-pit mines is a major issue relating to production safety in mines.In order to determine the technical parameters of a new type of supervising system applied in monitori...Monitoring the stability of steep slopes of open-pit mines is a major issue relating to production safety in mines.In order to determine the technical parameters of a new type of supervising system applied in monitoring steep slopes of open-pit mines,the MSARMA method was used to establish analytical models for the monitoring system,given various parameter settings based on the description of mechanical monitoring principles.We used this sensitivity analysis to conclude that the setting of the most sensitive location of a mechanical monitoring system should be within a range of 1/5~1/2 of the lower part in a vertical direction of steep slopes,with a rational and feasible range of the dip angle setting between 0°~20°.Given the analytical results of our on-site experiments,we have shown that the parameters determined reflect the stability of steep slopes accurately and effectively.These conclusions provide a basis for the application of a new type of steep slope stability monitoring technology in open-pit mines.展开更多
Displacement monitoring in open-pit mines is one of the important tasks for safe management of mining processes.Differential interferometric synthetic aperture radar(DInSAR),mounted on an artificial satellite,has the ...Displacement monitoring in open-pit mines is one of the important tasks for safe management of mining processes.Differential interferometric synthetic aperture radar(DInSAR),mounted on an artificial satellite,has the potential to be a cost-effective method for monitoring surface displacements over extensive areas,such as open-pit mines.DInSAR requires the ground surface elevation data in the process of its analysis as a digital elevation model(DEM).However,since the topography of the ground surface in open-pit mines changes largely due to excavations,measurement errors can occur due to insufficient information on the elevation of mining areas.In this paper,effect of different elevation models on the accuracy of the displacement monitoring results by DInSAR is investigated at a limestone quarry.In addition,validity of the DInSAR results using an appropriate DEM is examined by comparing them with the results obtained by global positioning system(GPS)monitoring conducted for three years at the same limestone quarry.It is found that the uncertainty of DEMs induces large errors in the displacement monitoring results if the baseline length of the satellites between the master and the slave data is longer than a few hundred meters.Comparing the monitoring results of DInSAR and GPS,the root mean square error(RMSE)of the discrepancy between the two sets of results is less than 10 mm if an appropriate DEM,considering the excavation processes,is used.It is proven that DInSAR can be applied for monitoring the displacements of mine slopes with centimeter-level accuracy.展开更多
This paper outlines the results obtained from real time microseismic monitoring of an opencast coal mine in South India.The objective of the study is to investigate the stress changes within the rockmass along the slo...This paper outlines the results obtained from real time microseismic monitoring of an opencast coal mine in South India.The objective of the study is to investigate the stress changes within the rockmass along the slope due to underground mine development operation and their impact on the stability of the highwall slope.The installed microseismic systems recorded the seismic triggerings down toà2 moment magnitude.In general,most of the events recorded during the monitoring period are weak in seismic energy.The study adopts a simple and more reliable tool to characterize the seismically active zone for assessing the stability of the highwall in real time.The impact of underground working on the slope is studied on the basis of the seismic event impact contours and seismic clusters.During the monitoring period,it is observed that the intensity of the overall microseismic activity along the slope due to the mine development operations did not cause any adverse impact on the highwall stability.展开更多
The scientific and fair positioning of monitoring locations for surface displacement on slopes is a prerequisite for early warning and forecasting.However,there is no specific provision on how to effectively determine...The scientific and fair positioning of monitoring locations for surface displacement on slopes is a prerequisite for early warning and forecasting.However,there is no specific provision on how to effectively determine the number and location of monitoring points according to the actual deformation characteristics of the slope.There are still some defects in the layout of monitoring points.To this end,based on displacement data series and spatial location information of surface displacement monitoring points,by combining displacement series correlation and spatial distance influence factors,a spatial deformation correlation calculation model of slope based on clustering analysis was proposed to calculate the correlation between different monitoring points,based on which the deformation area of the slope was divided.The redundant monitoring points in each partition were eliminated based on the partition's outcome,and the overall optimal arrangement of slope monitoring points was then achieved.This method scientifically addresses the issues of slope deformation zoning and data gathering overlap.It not only eliminates human subjectivity from slope deformation zoning but also increases the efficiency and accuracy of slope monitoring.In order to verify the effectiveness of the method,a sand-mudstone interbedded CounterTilt excavation slope in the Chongqing city of China was used as the research object.Twenty-four monitoring points deployed on this slope were monitored for surface displacement for 13 months.The spatial location of the monitoring points was discussed.The results show that the proposed method of slope deformation zoning and the optimized placement of monitoring points are feasible.展开更多
Safety monitoring and stability analysis of high slopes are important for high dam construction in high mountainous regions or precipitous gorges. In this paper, deformation characteristics of toppling block at upper ...Safety monitoring and stability analysis of high slopes are important for high dam construction in high mountainous regions or precipitous gorges. In this paper, deformation characteristics of toppling block at upper abutment, deforming tensile rip wedge in the middle part and deep fractures are comprehensively analyzed based on the geological conditions, construction methods and monitoring results of left abutment slope in Jinping Ⅰ hydropower station. Safety analyses of surface and shallow-buried rock masses and the corresponding anchorage system are presented. The monitoring results indicate that the global stability of the large wedge block in the left abutment is effectively under control, and the abutment slope is stable in a global sense. After the completion of excavation, the deformations of toppling block at the top of the slope and deep fracture zone continue at a very low rate, which can be explained as 'rock mass creep'. Further monitoring and analysis are needed.展开更多
The monitoring system for slope deformation which bases on Leica (TCA series) was researched and developed. This system consists of electronic total stations, high precision thermometer, digital barometer, photoelec...The monitoring system for slope deformation which bases on Leica (TCA series) was researched and developed. This system consists of electronic total stations, high precision thermometer, digital barometer, photoelectric frequency adjustor and other related instruments and data collection and processing software. The system can monitor a series of targets automatically to obtain accurate data of distance at predetermined time, besides, it can timely display targets' coordinates and deformation value, velocity, etc. in graph as well. To compare of the results of different monitoring time, we can find the problems of mine slope deformation rapidly and accurately.展开更多
Excavation is common in the construction of hydropower projects.Monitoring for both stable and unstable slopes is a pressing requirement during progressive excavations with or without cut-slope support measures.The pr...Excavation is common in the construction of hydropower projects.Monitoring for both stable and unstable slopes is a pressing requirement during progressive excavations with or without cut-slope support measures.The present study is about an excavation carried out in a proposed concrete gravity dam site on the right bank slope of the Punatsangchhu River in western Bhutan.During the excavation,the right bank abutment witnessed multiple events of slope failures of various magnitudes.One major landslide occurred on 23 July 2013 in the toe of the right abutment,where foliation/multiple sheared/fractured zones/seams in quartz-feldspathic biotite gneiss dip towards the valley.During further excavations/piling works,a subsequent landslide on the downstream,within the body of the July 2013 landslide,occurred on 12 August 2016.As a result,a real-time monitoring of the slope became necessary to facilitate further excavations for achieving the dam foundation.Thus,the advanced slope monitoring instrument like Image By Interferometric Survey e Frequency Modulated(IBIS-FM)radar was deployed for monitoring the right bank slope during the excavation for the construction of~129 m high dam.The displacement of the hill slope is assessed based on this system by monitoring point locations as well as areas by assigning different threshold values for providing timely alerts.This real-time monitoring was effective in identifying the reactivation of August 2016 landslide that occurred on 22 January 2019.Thus,this study showcases the efficiency of IBIS-FM radar in monitoring slope instability with sub-millimeter accuracy on a near real-time basis.展开更多
The stability of the surrounding rock mass around cross tunnel in the right bank slope of Dagangshan hydropower station, in the southwestern China, was analyzed by microseismic monitoring as well as numerical simulati...The stability of the surrounding rock mass around cross tunnel in the right bank slope of Dagangshan hydropower station, in the southwestern China, was analyzed by microseismic monitoring as well as numerical simulations. The realistic failure process analysis code (abbreviated as RFPA3D) was employed to reproduce the initiation, propagation, coalescence and interactions of micro-fractures, the evolution of associated stress fields and acoustic emission (AE) activities during the whole failure processes of the surrounding rock mass around cross tunnel. Combined with microseismic activities by microseismic monitoring on the fight bank slope, the spatial-temporal evolution and the micro-fracture precursor characteristics during the complete process of progressive failure of the surrounding rock mass around cross tunnel were discussed and the energy release law of the surrounding rock mass around the cross tunnel was obtained. The result shows that the precursor characteristic of microfractures occurring in rock mass is an effective approach to early warn catastrophic damage of rock mass around cross tunnel. Moreover, the heterogeneity of rock mass is the source and internal cause of the failure precursor of rock mass.展开更多
文摘[Objectives]To monitor the stability of open-pit coal mine slopes in real time and ensure the safety of coal mine production.[Methods]The automatic monitoring system of coal mine slope was explored in depth,and the core functions of the system were designed comprehensively.According to the design function of the automatic monitoring system,the slope automatic monitoring system was constructed.Besides,in accordance with the actual situation of the slope,the monitoring frequency of slopes was set scientifically,and the key indicators such as rainfall,deep displacement and surface displacement of the slopes were monitored in an all-round and multi-angle way.[Results]During the monitoring period,the overall condition of the slope remained good,and no landslides or other geological disasters occurred.At the same time,the overall rainfall in the slope area remained low.In terms of monitoring data,the horizontal displacement and settlement of the slopes increased first and then tended to be stable.Specifically,the maximum horizontal displacement during the monitoring period was 22.74 mm,while the maximum settlement was 18.65 mm.[Conclusions]The automatic slope monitoring system has obtained remarkable achievements in practical application.It not only improves the accuracy and efficiency of slope stability monitoring,but also provides valuable reference experience for similar projects.
基金funded by the project of the China Geological Survey(DD20211364)the Science and Technology Talent Program of Ministry of Natural Resources of China(grant number 121106000000180039–2201)。
文摘This study makes a significant progress in addressing the challenges of short-term slope displacement prediction in the Universal Landslide Monitoring Program,an unprecedented disaster mitigation program in China,where lots of newly established monitoring slopes lack sufficient historical deformation data,making it difficult to extract deformation patterns and provide effective predictions which plays a crucial role in the early warning and forecasting of landslide hazards.A slope displacement prediction method based on transfer learning is therefore proposed.Initially,the method transfers the deformation patterns learned from slopes with relatively rich deformation data by a pre-trained model based on a multi-slope integrated dataset to newly established monitoring slopes with limited or even no useful data,thus enabling rapid and efficient predictions for these slopes.Subsequently,as time goes on and monitoring data accumulates,fine-tuning of the pre-trained model for individual slopes can further improve prediction accuracy,enabling continuous optimization of prediction results.A case study indicates that,after being trained on a multi-slope integrated dataset,the TCN-Transformer model can efficiently serve as a pretrained model for displacement prediction at newly established monitoring slopes.The three-day average RMSE is significantly reduced by 34.6%compared to models trained only on individual slope data,and it also successfully predicts the majority of deformation peaks.The fine-tuned model based on accumulated data on the target newly established monitoring slope further reduced the three-day RMSE by 37.2%,demonstrating a considerable predictive accuracy.In conclusion,taking advantage of transfer learning,the proposed slope displacement prediction method effectively utilizes the available data,which enables the rapid deployment and continual refinement of displacement predictions on newly established monitoring slopes.
基金supported by the Research Grants Council of the Hong Kong SAR Government(Grant Nos.16202716 and C6012-15G)
文摘New sensing and wireless technologies generate massive data. This paper proposes an efficient Bayesian network to evaluate the slope safety using large-quantity field monitoring information with underlying physical mechanisms. A Bayesian network for a slope involving correlated material properties and dozens of observational points is constructed.
基金supported by grants from the National Basic Research Program of China (Grant Nos. 2011CB013503, 2014CB047103)the National Natural Science Foundation of China (Grant Nos. 51279024, 51209127)
文摘For high-steep slopes in hydropower engineering, damage can be induced or accumulated due to a seriesof human or natural activities, including excavation, dam construction, earthquake, rainstorm, rapid riseor drop of water level in the service lifetime of slopes. According to the concept that the progressivedamage (microseismicity) of rock slope is the essence of the precursor of slope instability, a microseismicmonitoring system for high-steep rock slopes is established. Positioning accuracy of the monitoringsystem is tested by fixed-position blasting method. Based on waveform and cluster analyses of microseismicevents recorded during test, the tempo-spatial distribution of microseismic events is analyzed.The deformation zone in the deep rock masses induced by the microseismic events is preliminarilydelimited. Based on the physical information measured by in situ microseismic monitoring, an evaluationmethod for the dynamic stability of rock slopes is proposed and preliminarily implemented bycombining microseismic monitoring and numerical modeling. Based on the rock mass damage modelobtained by back analysis of microseismic information, the rock mass elements within the microseismicdamage zone are automatically searched by finite element program. Then the stiffness and strengthreductions are performed on these damaged elements accordingly. Attempts are made to establish thecorrelation between microseismic event, strength deterioration and slope dynamic instability, so as toquantitatively evaluate the dynamic stability of slope. The case studies about two practical slopes indicatethat the proposed method can reflect the factor of safety of rock slope more objectively. Numericalanalysis can help to understand the characteristics and modes of the monitored microseismic events inrock slopes. Microseismic monitoring data and simulation results can be used to mutually modify thesensitive rock parameters and calibrate the model. Combination of microseismic monitoring and numericalsimulation provides a more objective basis for the numerical model and parameters and a solidmechanical foundation for the microseismic monitoring.
基金Project(50678175)supported by the National Natural Science Foundation of China
文摘In order to improve the understanding of the fundamental mechanism of rainfall infiltration induced landslides in accumulation slope and to clarify some important characteristics of slope performance,artificial rainfall simulation tests and field synthetic monitoring were carried out on a typical accumulation slope of Shangrui Freeway in Guizhou Province,China.The monitoring results show that the most accumulation landslides caused by rainfall infiltration are shallow relaxation failure,whose deformation zone lies within the top 0-4 m soil layer.The deformation of slope gradually reduces from the surface,where the greatest deformation lies in,to the deep part of slope.The average percentage of infiltration during the first 2 h is 86%,and then it reduces gradually with time because of the increase of the surface runoff.The average percentage of infiltration drop to a relatively stable value(50%)after 6 h.Rainfall infiltration causes obvious increase of pore-water pressure,which may result in a reduction of shear strength due to a decrease in effective stress and wetting-induced softening.The double-effect of rainfall infiltration is the main reason of rainfall infiltration induced landslides in accumulation slope.
文摘A type of velocity sensor CD 1, an auto recording instrument on blasting vibration YBJ 1 and a random signal and vibration analysis system (CRAS) were used to monitor the particle vibration induced by blasting at open pit slope in Hainan Iron Mine. The attenuating rules of blasting ground vibration on slope were developed. By means of the analysis and calculation of the blasting vibration data at open pit slope and the vertical particle vibration velocity assessment method based on the concept of vibration strength, the empirical attenuating equations which can be used for predicting and estimating the damage of slope were derived.
基金the financial support provided by the National Basic Research Program of China (973 Program) (Grant No. 2011CB710605)the National Natural Science Foundation of China (Grant Nos. 41102174, 41302217)supported by the National Key Technology R&D Program of China (Grant No. 2012BAK10B05)
文摘In the discipline of geotechnical engineering, fiber optic sensor based distributed monitoring has played an increasingly important role over the past few decades. Compared with conventional sensors, fiber optic sensors have a variety of exclusive advantages, such as smaller size, higher precision, and better corrosion resistance. These innovative monitoring technologies have been successfully applied for performance monitoring of geo-structures and early warning of potential geo- hazards around the world. In order to investigate their ability to monitor slope stability problems, a medium-sized model of soil nailed slope has been constructed in laboratory. The fully distributed Brillouin optical time-domain analysis (BOTDA) sensing technology was employed to measure the horizontal strain distributions inside the model slope. During model construction, a specially designed strain sensing fiber was buried in the soil mass. Afterward, the surcharge loading was applied on the slope crest in stages using hydraulic jacks and a reaction frame. During testing, an NBX-6o5o BOTDA sensing interrogator was used to collect the fiber optic sensing data. The test results have been analyzed in detail, which shows that the fiber optic sensors can capture the progressive deformation and failure pattern of the model slope. The limit equilibrium analyses were also conducted to obtain the factors ofsafety of the slope under different surface loadings. It is found that the characteristic maximum strains can reflect the stability of the model slope and an empirical relationship was obtained, This study verified the effectiveness of the distributed BOTDA sensing technology in performance monitoring of slope.
基金supported by National Natural Science Foundation of China (Grant No.41072231)China Geological Survey Bureau (Grant Nos 1212010914010 and 1212011220154)Program for Changjiang Scholars and Innovative Research Team in University" (Grant No. IRT0812)
文摘Previous investigations have shown that the seismic response of slopes during the Wenchuan earthquake was highly variable. The present study tries to give an answer to the question: Which are the main factors affecting the seismic response degree of slopes? With the support of the China Geological Survey Bureau, we set 3 monitoring sections in Jiulong slope, Mianzhu city, China with the aim to record the site response of the slope during the affershoeks of the Wenehuan earthquake. After the Wenchuan earthquake, which happened on 12 May 2008, 30 aftershocks have been recorded in these monitoring points. We analyzed 11 records, with magnitudes ranging from ML = 4.6 to ML = 3.1. The amplification factors of the horizontal compound PGA and 3D compound PGA have been determined for the 3 points at different elevations on the slope. Results showed that the dynamic response of the slope on the earthquake was controlled by factors such as topography and the thickness of the Quaternary overburden.
文摘The construction of the double-lane five-step ship lock of the Three Gorges Project (TGP) wascommenced in 1994, the excavation of the ship lock was completed by the end of 1999, and the ship lockwas put in operation in June 2003. The side slopes of the ship lock are characterized by great height(170 m), steepness (70 m in height of upright slope), and great length (over 7000 m in total length). Inassociation with the ship lock, the surrounding rocks in slope have a high potential to deform, withwhich the magnitude of deformation is restricted. Monitoring results show that the deformation of thefive-step ship lock high slopes of the TGP primarily occurred in excavation period, and deformationtended to be stable and convergent during operation period, suggesting the allowable ranges of deformation.At present, the slopes and lock chambers are stable, and the ship lock works well under normaloperation condition, enabling the social and economic benefits of the TGP. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
基金supported by the National "Eleventh Five-Year" Forestry Support Program of China (No2006BAD03A1603)
文摘An ILRIS-36D 3-D laser image scanning system was used to monitor the Anjialing strip mine slope on Pingshuo in Shanxi province. The basic working principles, performance indexes, features and data collection and processing methods are illus-trated. The point cloud results are analyzed in detail. The rescale range analysis method was used to analyze the deformation char-acteristics of the slope. The results show that the trend of slope displacement is stable and that the degree of landslide danger is low. This work indicates that 3-D laser image scanning can supply multi-parameter, high precision real time data over long distances. These data can be used to study the distortion of the slope quickly and accurately.
基金supported by the Centennial Trust Fund, School of Mining Engineering, University of the Witwatersrand, South Africa
文摘Radar slope monitoring is now widely used across the world, for example, the slope stability radar(SSR)and the movement and surveying radar(MSR) are currently in use in many mines around the world.However, to fully realize the effectiveness of this radar in notifying mine personnel of an impending slope failure, a method that can confidently predict the time of failure is necessary. The model developed in this study is based on the inverse velocity method pioneered by Fukuzono in 1985. The model named the slope failure prediction model(SFPM) was validated with the displacement data from two slope failures monitored with the MSR. The model was found to be very effective in predicting the time to failure while providing adequate evacuation time once the progressive displacement stage is reached.
基金funded by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(2019QZKK0904)National Natural Science Foundation of China(42077266,41825018,42090051,41941018,41902289)Strategic Priority Research Program of the Chinese Academy of Sciences(XDA23090402)。
文摘A landslide always results from a progressive process of slope deformation. In recent years, an increasing number of slope instabilities have occurred with regard to human engineering activities such as hydropower or traffic construction in mountainous area, which cause even greater casualties and economic loss compared with the natural hazards. The development of such earth surface process may hold long period with mechanisms still not fully understood. Using monitoring technology is an effective and intuitive approach to assist analyzing the slope deformation process and their driving factors. This study presents an engineering slope excavated during the construction of Changheba Hydropower Station, which is located in the upper reaches of Dadu River, Sichuan Province, southwest China. The engineering slope experienced and featured a five-year continuous deformation which caused continuous high risks to the engineering activities. We conducted in-depth analysis for such a long-term deformation process based on ground and subsurface monitoring data, collected successive data with a series of monitoring equipment such as automated total station, borehole inclinometers and other auxiliary apparatus, and identified the deformation process based on the comprehensive analysis of monitoring data as well as field investigation. After analyzing the effects of engineering activities and natural factors on the continuous deformation, we found that the overburden strata provided deformable mass while the excavation-produced steep terrain initiated the slope deformation in limit equilibrium state over a long period of time;afterwards, the intense rainwater accelerated slope deformation in the rainy season.
基金Project 1053G032 supported by the Youth Science Foundation of Educational Committee of Heilongjiang Province
文摘Monitoring the stability of steep slopes of open-pit mines is a major issue relating to production safety in mines.In order to determine the technical parameters of a new type of supervising system applied in monitoring steep slopes of open-pit mines,the MSARMA method was used to establish analytical models for the monitoring system,given various parameter settings based on the description of mechanical monitoring principles.We used this sensitivity analysis to conclude that the setting of the most sensitive location of a mechanical monitoring system should be within a range of 1/5~1/2 of the lower part in a vertical direction of steep slopes,with a rational and feasible range of the dip angle setting between 0°~20°.Given the analytical results of our on-site experiments,we have shown that the parameters determined reflect the stability of steep slopes accurately and effectively.These conclusions provide a basis for the application of a new type of steep slope stability monitoring technology in open-pit mines.
基金partially supported by JSPS KAKENHI(Grant No.16H03153)the Limestone Association of Japan。
文摘Displacement monitoring in open-pit mines is one of the important tasks for safe management of mining processes.Differential interferometric synthetic aperture radar(DInSAR),mounted on an artificial satellite,has the potential to be a cost-effective method for monitoring surface displacements over extensive areas,such as open-pit mines.DInSAR requires the ground surface elevation data in the process of its analysis as a digital elevation model(DEM).However,since the topography of the ground surface in open-pit mines changes largely due to excavations,measurement errors can occur due to insufficient information on the elevation of mining areas.In this paper,effect of different elevation models on the accuracy of the displacement monitoring results by DInSAR is investigated at a limestone quarry.In addition,validity of the DInSAR results using an appropriate DEM is examined by comparing them with the results obtained by global positioning system(GPS)monitoring conducted for three years at the same limestone quarry.It is found that the uncertainty of DEMs induces large errors in the displacement monitoring results if the baseline length of the satellites between the master and the slave data is longer than a few hundred meters.Comparing the monitoring results of DInSAR and GPS,the root mean square error(RMSE)of the discrepancy between the two sets of results is less than 10 mm if an appropriate DEM,considering the excavation processes,is used.It is proven that DInSAR can be applied for monitoring the displacements of mine slopes with centimeter-level accuracy.
基金the S&T project ‘‘High resolution microseismic monitoring for early detection and analysis of slope failure in opencast mines’’ funded by inistry of Coal,Government of IndiaThe Singareni Collieries Co Ltd (SCCL),Andhra Pradesh
文摘This paper outlines the results obtained from real time microseismic monitoring of an opencast coal mine in South India.The objective of the study is to investigate the stress changes within the rockmass along the slope due to underground mine development operation and their impact on the stability of the highwall slope.The installed microseismic systems recorded the seismic triggerings down toà2 moment magnitude.In general,most of the events recorded during the monitoring period are weak in seismic energy.The study adopts a simple and more reliable tool to characterize the seismically active zone for assessing the stability of the highwall in real time.The impact of underground working on the slope is studied on the basis of the seismic event impact contours and seismic clusters.During the monitoring period,it is observed that the intensity of the overall microseismic activity along the slope due to the mine development operations did not cause any adverse impact on the highwall stability.
基金funding from the National Natural Science Foundation of China(No.41572308)。
文摘The scientific and fair positioning of monitoring locations for surface displacement on slopes is a prerequisite for early warning and forecasting.However,there is no specific provision on how to effectively determine the number and location of monitoring points according to the actual deformation characteristics of the slope.There are still some defects in the layout of monitoring points.To this end,based on displacement data series and spatial location information of surface displacement monitoring points,by combining displacement series correlation and spatial distance influence factors,a spatial deformation correlation calculation model of slope based on clustering analysis was proposed to calculate the correlation between different monitoring points,based on which the deformation area of the slope was divided.The redundant monitoring points in each partition were eliminated based on the partition's outcome,and the overall optimal arrangement of slope monitoring points was then achieved.This method scientifically addresses the issues of slope deformation zoning and data gathering overlap.It not only eliminates human subjectivity from slope deformation zoning but also increases the efficiency and accuracy of slope monitoring.In order to verify the effectiveness of the method,a sand-mudstone interbedded CounterTilt excavation slope in the Chongqing city of China was used as the research object.Twenty-four monitoring points deployed on this slope were monitored for surface displacement for 13 months.The spatial location of the monitoring points was discussed.The results show that the proposed method of slope deformation zoning and the optimized placement of monitoring points are feasible.
文摘Safety monitoring and stability analysis of high slopes are important for high dam construction in high mountainous regions or precipitous gorges. In this paper, deformation characteristics of toppling block at upper abutment, deforming tensile rip wedge in the middle part and deep fractures are comprehensively analyzed based on the geological conditions, construction methods and monitoring results of left abutment slope in Jinping Ⅰ hydropower station. Safety analyses of surface and shallow-buried rock masses and the corresponding anchorage system are presented. The monitoring results indicate that the global stability of the large wedge block in the left abutment is effectively under control, and the abutment slope is stable in a global sense. After the completion of excavation, the deformations of toppling block at the top of the slope and deep fracture zone continue at a very low rate, which can be explained as 'rock mass creep'. Further monitoring and analysis are needed.
文摘The monitoring system for slope deformation which bases on Leica (TCA series) was researched and developed. This system consists of electronic total stations, high precision thermometer, digital barometer, photoelectric frequency adjustor and other related instruments and data collection and processing software. The system can monitor a series of targets automatically to obtain accurate data of distance at predetermined time, besides, it can timely display targets' coordinates and deformation value, velocity, etc. in graph as well. To compare of the results of different monitoring time, we can find the problems of mine slope deformation rapidly and accurately.
文摘Excavation is common in the construction of hydropower projects.Monitoring for both stable and unstable slopes is a pressing requirement during progressive excavations with or without cut-slope support measures.The present study is about an excavation carried out in a proposed concrete gravity dam site on the right bank slope of the Punatsangchhu River in western Bhutan.During the excavation,the right bank abutment witnessed multiple events of slope failures of various magnitudes.One major landslide occurred on 23 July 2013 in the toe of the right abutment,where foliation/multiple sheared/fractured zones/seams in quartz-feldspathic biotite gneiss dip towards the valley.During further excavations/piling works,a subsequent landslide on the downstream,within the body of the July 2013 landslide,occurred on 12 August 2016.As a result,a real-time monitoring of the slope became necessary to facilitate further excavations for achieving the dam foundation.Thus,the advanced slope monitoring instrument like Image By Interferometric Survey e Frequency Modulated(IBIS-FM)radar was deployed for monitoring the right bank slope during the excavation for the construction of~129 m high dam.The displacement of the hill slope is assessed based on this system by monitoring point locations as well as areas by assigning different threshold values for providing timely alerts.This real-time monitoring was effective in identifying the reactivation of August 2016 landslide that occurred on 22 January 2019.Thus,this study showcases the efficiency of IBIS-FM radar in monitoring slope instability with sub-millimeter accuracy on a near real-time basis.
基金Projects(50820125405, 51004020, 51174039, 4112265) supported by the National Natural Science Foundation of ChinaProject(201104563) supported by the China Postdoctoral Science Foundation+3 种基金Project(2011CB013503) supported by the National Basic Research Program of ChinaProject(51274053) supported by the Fundamental Research Funds for the Central Universities of ChinaProject(200960) supported by the Foundation for the Author of National Excellent Doctoral Dissertation of ChinaProject(NECT-09-0258) supported by the New Century Excellent Talents in University of China
文摘The stability of the surrounding rock mass around cross tunnel in the right bank slope of Dagangshan hydropower station, in the southwestern China, was analyzed by microseismic monitoring as well as numerical simulations. The realistic failure process analysis code (abbreviated as RFPA3D) was employed to reproduce the initiation, propagation, coalescence and interactions of micro-fractures, the evolution of associated stress fields and acoustic emission (AE) activities during the whole failure processes of the surrounding rock mass around cross tunnel. Combined with microseismic activities by microseismic monitoring on the fight bank slope, the spatial-temporal evolution and the micro-fracture precursor characteristics during the complete process of progressive failure of the surrounding rock mass around cross tunnel were discussed and the energy release law of the surrounding rock mass around the cross tunnel was obtained. The result shows that the precursor characteristic of microfractures occurring in rock mass is an effective approach to early warn catastrophic damage of rock mass around cross tunnel. Moreover, the heterogeneity of rock mass is the source and internal cause of the failure precursor of rock mass.