Huaihe River Basin(HRB) is located in China’s north-south climatic transition zone,which is very sensitive to global climate change.Based on the daily maximum temperature,minimum temperature,and precipitation data of...Huaihe River Basin(HRB) is located in China’s north-south climatic transition zone,which is very sensitive to global climate change.Based on the daily maximum temperature,minimum temperature,and precipitation data of 40 meteorological stations and nine monthly large-scale ocean-atmospheric circulation indices data during 1959–2019,we present an assessment of the spatial and temporal variations of extreme temperature and precipitation events in the HRB using nine extreme climate indices,and analyze the teleconnection relationship between extreme climate indices and large-scale ocean-atmospheric circulation indices.The results show that warm extreme indices show a significant(P < 0.05) increasing trend,while cold extreme indices(except for cold spell duration) and diurnal temperature range(DTR) show a significant decreasing trend.Furthermore,all extreme temperature indices show significant mutations during 1959-2019.Spatially,a stronger warming trend occurs in eastern HRB than western HRB,while maximum 5-d precipitation(Rx5day) and rainstorm days(R25) show an increasing trend in the southern,central,and northwestern regions of HRB.Arctic oscillation(AO),Atlantic multidecadal oscillation(AMO),and East Atlantic/Western Russia(EA/WR) have a stronger correlation with extreme climate indices compared to other circulation indices.AO and AMO(EA/WR) exhibit a significant(P < 0.05) negative(positive)correlation with frost days and diurnal temperature range.Extreme warm events are strongly correlated with the variability of AMO and EA/WR in most parts of HRB,while extreme cold events are closely related to the variability of AO and AMO in eastern HRB.In contrast,AMO,AO,and EA/WR show limited impacts on extreme precipitation events in most parts of HRB.展开更多
In recent years the progress of the automobile industry, in the field of reduction of emissions values, is very remarkable. Nevertheless their evaluation and reduction is a key problem, especially in the cities, that ...In recent years the progress of the automobile industry, in the field of reduction of emissions values, is very remarkable. Nevertheless their evaluation and reduction is a key problem, especially in the cities, that account for more than 50% of world population. So a correct evaluation of pollutant emissions and fuel consumption by vehicles in real use and precisely geolocated in a road is an important activity and it is still open in the international scientific contexts. A particular attention was given to the slope variability along the streets during each journey performed by the instrumented vehicle. In this paper we deal with the problem of describing a quantitatively approach for the reconstruction of GPS coordinates and altitude, in the context of correlation study between driving cycles / emission / geographical location.展开更多
One-dimensional open channel flows are simulated using the discontinuous Galerkin finite element method. Three different explicit time marching schemes, including multistep/multistage schemes, are evaluated for differ...One-dimensional open channel flows are simulated using the discontinuous Galerkin finite element method. Three different explicit time marching schemes, including multistep/multistage schemes, are evaluated for different channel shapes for accuracy and efficiency. The Forward Euler, second-order Adam-Bashforth (multistep), and second-order total variation diminishing (TVD) Runge-Kutta (multistage) time marching schemes are utilized. The role of monotonized central, minmod, and zero TVD slope limiters for each of the time marching scheme is investigated. The numerical flux is approximated using HLL function. The accuracy and robustness of different time marching schemes are evaluated for steady and unsteady flows using analytical and measured data. The unsteady flows include dam break tests with wet and dry beds downstream of the dam in prismatic (rectangular, trapezoidal, triangular, and parabolic cross-sections) and non-prismatic (natural river) channels. The steady flow test involves simulation of hydraulic jump in a diverging rectangular channel. The various schemes are evaluated by comparing accuracy using statistical measures and efficiency using maximum possible time step size as well as CPU runtime. The second-order Adam-Bashforth time marching scheme is found to have the best accuracy and efficiency among the time stepping schemes tested.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.52279016,51909106,51879108,42002247,41471160)Natural Science Foundation of Guangdong Province,China(No.2020A1515011038,2020A1515111054)+1 种基金Special Fund for Science and Technology Development in 2016 of Department of Science and Technology of Guangdong Province,China(No.2016A020223007)the Project of Jinan Science and Technology Bureau(No.2021GXRC070)。
文摘Huaihe River Basin(HRB) is located in China’s north-south climatic transition zone,which is very sensitive to global climate change.Based on the daily maximum temperature,minimum temperature,and precipitation data of 40 meteorological stations and nine monthly large-scale ocean-atmospheric circulation indices data during 1959–2019,we present an assessment of the spatial and temporal variations of extreme temperature and precipitation events in the HRB using nine extreme climate indices,and analyze the teleconnection relationship between extreme climate indices and large-scale ocean-atmospheric circulation indices.The results show that warm extreme indices show a significant(P < 0.05) increasing trend,while cold extreme indices(except for cold spell duration) and diurnal temperature range(DTR) show a significant decreasing trend.Furthermore,all extreme temperature indices show significant mutations during 1959-2019.Spatially,a stronger warming trend occurs in eastern HRB than western HRB,while maximum 5-d precipitation(Rx5day) and rainstorm days(R25) show an increasing trend in the southern,central,and northwestern regions of HRB.Arctic oscillation(AO),Atlantic multidecadal oscillation(AMO),and East Atlantic/Western Russia(EA/WR) have a stronger correlation with extreme climate indices compared to other circulation indices.AO and AMO(EA/WR) exhibit a significant(P < 0.05) negative(positive)correlation with frost days and diurnal temperature range.Extreme warm events are strongly correlated with the variability of AMO and EA/WR in most parts of HRB,while extreme cold events are closely related to the variability of AO and AMO in eastern HRB.In contrast,AMO,AO,and EA/WR show limited impacts on extreme precipitation events in most parts of HRB.
文摘In recent years the progress of the automobile industry, in the field of reduction of emissions values, is very remarkable. Nevertheless their evaluation and reduction is a key problem, especially in the cities, that account for more than 50% of world population. So a correct evaluation of pollutant emissions and fuel consumption by vehicles in real use and precisely geolocated in a road is an important activity and it is still open in the international scientific contexts. A particular attention was given to the slope variability along the streets during each journey performed by the instrumented vehicle. In this paper we deal with the problem of describing a quantitatively approach for the reconstruction of GPS coordinates and altitude, in the context of correlation study between driving cycles / emission / geographical location.
文摘One-dimensional open channel flows are simulated using the discontinuous Galerkin finite element method. Three different explicit time marching schemes, including multistep/multistage schemes, are evaluated for different channel shapes for accuracy and efficiency. The Forward Euler, second-order Adam-Bashforth (multistep), and second-order total variation diminishing (TVD) Runge-Kutta (multistage) time marching schemes are utilized. The role of monotonized central, minmod, and zero TVD slope limiters for each of the time marching scheme is investigated. The numerical flux is approximated using HLL function. The accuracy and robustness of different time marching schemes are evaluated for steady and unsteady flows using analytical and measured data. The unsteady flows include dam break tests with wet and dry beds downstream of the dam in prismatic (rectangular, trapezoidal, triangular, and parabolic cross-sections) and non-prismatic (natural river) channels. The steady flow test involves simulation of hydraulic jump in a diverging rectangular channel. The various schemes are evaluated by comparing accuracy using statistical measures and efficiency using maximum possible time step size as well as CPU runtime. The second-order Adam-Bashforth time marching scheme is found to have the best accuracy and efficiency among the time stepping schemes tested.