The instability of slope blocks occurred frequently along traffic corridor in Southeastern Tibet(TCST),which was primarily controlled by the rock mass structures.A rapid method evaluating the control effects of rock m...The instability of slope blocks occurred frequently along traffic corridor in Southeastern Tibet(TCST),which was primarily controlled by the rock mass structures.A rapid method evaluating the control effects of rock mass structures was proposed through field statistics of the slopes and rock mass structures along TCST,which combined the stereographic projection method,modified M-JCS model,and limit equilibrium theory.The instabilities of slope blocks along TCST were then evaluated rapidly,and the different control factors of instability were analyzed.Results showed that the probabilities of toppling(5.31%),planar(16.15%),and wedge(35.37%)failure of slope blocks along TCST increased sequentially.These instability modes were respectively controlled by the anti-dip joint,the joint parallel to slope surface with a dip angle smaller than the slope angle(singlejoint),and two groups of joints inclined out of the slope(double-joints).Regarding the control effects on slope block instability,the stabilization ability of doublejoints(72.7%),anti-dip joint(67.4%),and single-joint(57.6%)decreased sequentially,resulting in different probabilities of slope block instability.Additionally,nearby regional faults significantly influenced the joints,leading to spatial heterogeneity and segmental clustering in the stabilization ability provided by joints to the slope blocks.Consequently,the stability of slope blocks gradually weakened as they approached the fault zones.This paper can provide guidance and assistance for investigating the development characteristics of rock mass structures and the stability of slope blocks.展开更多
In this paper, firstly, the rock slope and rock mass structure are introduced. And then, two aspects of the study of the structural plane are discussed: The first aspect is method for determining mechanical parameter...In this paper, firstly, the rock slope and rock mass structure are introduced. And then, two aspects of the study of the structural plane are discussed: The first aspect is method for determining mechanical parameters of structural plane; The second aspect is analysis of shear strength of structural plane.展开更多
The appearance of 3D laser scanning technology is one of the most important technology revolutions in surveying and mapping field. It can be widely used in many interrelated fields, such as engineering constructions a...The appearance of 3D laser scanning technology is one of the most important technology revolutions in surveying and mapping field. It can be widely used in many interrelated fields, such as engineering constructions and 3D measurements, owing to its prominent characteristics of the high efficiency and high precision. At present its application is still in the initial state, and it is quite rarely used in China, especially in geotechnical engineering and geological engineering fields. Starting with a general introduction of 3D laser scanning technology, this article studies how to apply the technology to high rock slope investigations. By way of a case study, principles and methods of quick slope documentation and occurrence measurement of discontinuities are discussed and analyzed. Analysis results show that the application of 3D laser scanning technology to geotechnical and geological engineering has a great prospect and value.展开更多
The stability of slope rock masses is influenced by freeze-thaw cycles in cold region,and the mechanism of stability deterioration is not clear.In order to understand the damage and progressive failure characteristics...The stability of slope rock masses is influenced by freeze-thaw cycles in cold region,and the mechanism of stability deterioration is not clear.In order to understand the damage and progressive failure characteristics of rock masses under the action of freezing and thawing,a model test was conducted on slope with steep joint in this study.The temperature,frost heaving pressure and deformation of slope rock mass were monitored in real-time during the test and the progressive failure mode was studied.The experimental results show that the temperature variations of cracking and the rock mass of a slope are different.There are obvious latent heat stages in the temperature-change plot in the crack,but not in the slope rock masses.The frost heaving effect in the fracture is closely related to the constraint conditions,which change with the deformation of the fracture.The frost heaving pressure fluctuates periodically during freezing and continues to decrease during thawing.The surface deformation of the rock mass increases during freezing,and the deformation is restored when it thaws.Freeze-thaw cycling results in residual deformation of the rock mass which cannot be fully restored.Analysis shows that the rock mass at the free side of the steep-dip joint rotates slightly under the frost heaving effect,causing fracture propagation.The fracture propagation pattern is a circular arc at the beginning,then extends to the possible sliding direction of the rock mass.Frost heaving force and fracture water pressure are the key factors for the failure of the slope,which can cause the crack to penetrate the rock mass,and a landslide ensues when the overall anti-sliding resistance of the rock mass is overcome.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41941019,42177142)the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(Grant NO.2019QZKK0904)the Fundamental Research Funds for the Central Universities,CHD(Grant No.300102212213).
文摘The instability of slope blocks occurred frequently along traffic corridor in Southeastern Tibet(TCST),which was primarily controlled by the rock mass structures.A rapid method evaluating the control effects of rock mass structures was proposed through field statistics of the slopes and rock mass structures along TCST,which combined the stereographic projection method,modified M-JCS model,and limit equilibrium theory.The instabilities of slope blocks along TCST were then evaluated rapidly,and the different control factors of instability were analyzed.Results showed that the probabilities of toppling(5.31%),planar(16.15%),and wedge(35.37%)failure of slope blocks along TCST increased sequentially.These instability modes were respectively controlled by the anti-dip joint,the joint parallel to slope surface with a dip angle smaller than the slope angle(singlejoint),and two groups of joints inclined out of the slope(double-joints).Regarding the control effects on slope block instability,the stabilization ability of doublejoints(72.7%),anti-dip joint(67.4%),and single-joint(57.6%)decreased sequentially,resulting in different probabilities of slope block instability.Additionally,nearby regional faults significantly influenced the joints,leading to spatial heterogeneity and segmental clustering in the stabilization ability provided by joints to the slope blocks.Consequently,the stability of slope blocks gradually weakened as they approached the fault zones.This paper can provide guidance and assistance for investigating the development characteristics of rock mass structures and the stability of slope blocks.
文摘In this paper, firstly, the rock slope and rock mass structure are introduced. And then, two aspects of the study of the structural plane are discussed: The first aspect is method for determining mechanical parameters of structural plane; The second aspect is analysis of shear strength of structural plane.
基金the Key Project of Joint Funds of Yalongjiang River Development of the National Natural Science Foundation of China (No. 50539050)
文摘The appearance of 3D laser scanning technology is one of the most important technology revolutions in surveying and mapping field. It can be widely used in many interrelated fields, such as engineering constructions and 3D measurements, owing to its prominent characteristics of the high efficiency and high precision. At present its application is still in the initial state, and it is quite rarely used in China, especially in geotechnical engineering and geological engineering fields. Starting with a general introduction of 3D laser scanning technology, this article studies how to apply the technology to high rock slope investigations. By way of a case study, principles and methods of quick slope documentation and occurrence measurement of discontinuities are discussed and analyzed. Analysis results show that the application of 3D laser scanning technology to geotechnical and geological engineering has a great prospect and value.
基金supported by the National Natural Science Foundation of China(Project No.52179110,41877280 and 51309025)the Fundamental Research Funds for Central Public Welfare Research Institutes(CKSF 2019180/YT)the Research Funding of Wuhan Polytechnic University(NO.2021RZ028)。
文摘The stability of slope rock masses is influenced by freeze-thaw cycles in cold region,and the mechanism of stability deterioration is not clear.In order to understand the damage and progressive failure characteristics of rock masses under the action of freezing and thawing,a model test was conducted on slope with steep joint in this study.The temperature,frost heaving pressure and deformation of slope rock mass were monitored in real-time during the test and the progressive failure mode was studied.The experimental results show that the temperature variations of cracking and the rock mass of a slope are different.There are obvious latent heat stages in the temperature-change plot in the crack,but not in the slope rock masses.The frost heaving effect in the fracture is closely related to the constraint conditions,which change with the deformation of the fracture.The frost heaving pressure fluctuates periodically during freezing and continues to decrease during thawing.The surface deformation of the rock mass increases during freezing,and the deformation is restored when it thaws.Freeze-thaw cycling results in residual deformation of the rock mass which cannot be fully restored.Analysis shows that the rock mass at the free side of the steep-dip joint rotates slightly under the frost heaving effect,causing fracture propagation.The fracture propagation pattern is a circular arc at the beginning,then extends to the possible sliding direction of the rock mass.Frost heaving force and fracture water pressure are the key factors for the failure of the slope,which can cause the crack to penetrate the rock mass,and a landslide ensues when the overall anti-sliding resistance of the rock mass is overcome.