Determination of the grouting anchor pullout force is a key step during the design of anchor-pull retaining wall, but it is mostly determined relied on empirical formula at present, and the rationality and the safety ...Determination of the grouting anchor pullout force is a key step during the design of anchor-pull retaining wall, but it is mostly determined relied on empirical formula at present, and the rationality and the safety cannot be effectively guaranteed. Based on the engineering case of the gravity retaining wall of Qinglin Freeway, the model test was designed, and combined with the results of the ABAQUS finite element numerical analysis, it was analyzed that how the anchor axial pulling force distributes. The results showed that the force of the anchor near the wall bolt was large and which far from the wall was small and the ultimate pullout force was proportional to the length, diameter and shear strength. When the end tension of the anchor was small, the top load played a leading role on the anchor tension. This conclusion confirmed the calculation formula of ultimate pullout force was and provided a theoretical basis for anchor-pull retaining wall design and calculation.展开更多
In this study, a modified logarithmic spiral method is proposed to determine the passive earth pressure and failure surface of cohesionless sloping backfill, with presence of wallesoil interface friction. The proposed...In this study, a modified logarithmic spiral method is proposed to determine the passive earth pressure and failure surface of cohesionless sloping backfill, with presence of wallesoil interface friction. The proposed method is based on a limit equilibrium analysis wherein the assumed profile of the backfill failure surface is a composite of logarithmic spiral and its tangent. If the wallesoil interface is smooth, a straight line does not need to be assumed for the failure surface. The geometry of the failure surface is determined using the Mohr circle analysis of the soil. The resultant passive earth thrust is computed considering equilibrium of moments. The passive earth pressure coefficients are calculated with varied values of soil internal friction angle and cohesion, wall friction angle and inclination angle, and sloping backfill angle. This method is verified with the finite element method(FEM) by comparing the horizontal passive earth pressure and failure surface. The results agree well with other solutions, particularly with those obtained by the FEM. The implementation of the present method is efficient. The logarithmic spiral theory is rigorous and self-explanatory for the geotechnical engineer.展开更多
文摘Determination of the grouting anchor pullout force is a key step during the design of anchor-pull retaining wall, but it is mostly determined relied on empirical formula at present, and the rationality and the safety cannot be effectively guaranteed. Based on the engineering case of the gravity retaining wall of Qinglin Freeway, the model test was designed, and combined with the results of the ABAQUS finite element numerical analysis, it was analyzed that how the anchor axial pulling force distributes. The results showed that the force of the anchor near the wall bolt was large and which far from the wall was small and the ultimate pullout force was proportional to the length, diameter and shear strength. When the end tension of the anchor was small, the top load played a leading role on the anchor tension. This conclusion confirmed the calculation formula of ultimate pullout force was and provided a theoretical basis for anchor-pull retaining wall design and calculation.
基金funded by the Doctoral Scientific Research Foundation of Liaoning Province(Grant No.20170520341)the Fundamental Research Funds for the Central Universities(Grant No.N170103015)
文摘In this study, a modified logarithmic spiral method is proposed to determine the passive earth pressure and failure surface of cohesionless sloping backfill, with presence of wallesoil interface friction. The proposed method is based on a limit equilibrium analysis wherein the assumed profile of the backfill failure surface is a composite of logarithmic spiral and its tangent. If the wallesoil interface is smooth, a straight line does not need to be assumed for the failure surface. The geometry of the failure surface is determined using the Mohr circle analysis of the soil. The resultant passive earth thrust is computed considering equilibrium of moments. The passive earth pressure coefficients are calculated with varied values of soil internal friction angle and cohesion, wall friction angle and inclination angle, and sloping backfill angle. This method is verified with the finite element method(FEM) by comparing the horizontal passive earth pressure and failure surface. The results agree well with other solutions, particularly with those obtained by the FEM. The implementation of the present method is efficient. The logarithmic spiral theory is rigorous and self-explanatory for the geotechnical engineer.