Flow and heat transfer characteristics of slot jets impingement to a cylindrical convex surface are numerically investigated.Suitable turbulence models have been determined through comparison with the experimental dat...Flow and heat transfer characteristics of slot jets impingement to a cylindrical convex surface are numerically investigated.Suitable turbulence models have been determined through comparison with the experimental data.Flow structures are described and impingement heat transfer characteristics are discussed.The effects of Re,H/B and D/B on single-slot jets impingement heat transfer are analyzed and heat transfer characteristics of multiple-slot jets are investigated.The results show that:Gas flows along the convex surface and boundary layer separation occurs in both single and multiple-slot jets impingement.A maximum stagnation Nu appears at H/B=8 and the local Nu decreases with increasing H/B in the region far away from the stagnation.The Nu in the stagnation region decreases with increasing D/B but the Nu is nearly the same in the region far away from the stagnation.Pressure gradient is an important factor on heat transfer enhancement.Correlations of the Num for single-slot,double-slot and quadric-slot jets impinging on a convex surface are obtained.It indicates the effects of Re and D/B on Num could become more important in less slot jets impingement.展开更多
This Article presents a three dimensional numerical model investigating thermal performance and hydrodynamics features of the confined slot jet impingement using slurry of Nano Encapsulated Phase Change Material(NEPCM...This Article presents a three dimensional numerical model investigating thermal performance and hydrodynamics features of the confined slot jet impingement using slurry of Nano Encapsulated Phase Change Material(NEPCM)as a coolant.The slurry is composed of water as a base fluid and n-octadecane NEPCM particles with mean diameter of 100 nm suspended in it.A single phase fluid approach is employed to model the NEPCM slurry.The thermo physical properties of the NEPCM slurry are computed using modern approaches being proposed recently and governing equations are solved with a commercial Finite Volume based code.The effects of jet Reynolds number varying from 100 to 600 and particle volume fraction ranging from 0% to 28% are considered.The computed results are validated by comparing Nusselt number values at stagnation point with the previously published results with water as working fluid.It was found that adding NEPCM to the base fluid results with considerable amount of heat transfer enhancement.The highest values of heat transfer coefficients are observed at H/W=4 and C_m=0.28.However,due to the higher viscosity of slurry compared with the base fluid,the slurry can produce drastic increase in pressure drop of the system that increases with NEPCM particle loading and jet Reynolds number.展开更多
To investigate the attitude-switching mechanisms of existing jet slotters,which integrate drilling,punching and slotting operations,and to improve its fracture ability,we used the power bond diagram theory to analyse ...To investigate the attitude-switching mechanisms of existing jet slotters,which integrate drilling,punching and slotting operations,and to improve its fracture ability,we used the power bond diagram theory to analyse the dynamic flow pressure,and force of slotters.A mathematical model was developed for the dynamic characteristics of slotter systems.Furthermore,to study the effect of the main characteristic parameters on the ability of the nozzle to erode sandstone,multi-orthogonal experiments were carried out.And the optimised slots were applied in later practical operations.The research results show that the inlet fluid passed through the time-varying orifice to generate pressure differential thrust,which overcame the spring force,pushed the valve core to open the side nozzle,and closed the rear cavity channel thereby realising the switch of the slotter attitude.An optimal plan was established to balance the diameter,depth,and volume of punching,and a rock-breaking plan was developed for the slotter.Subsequently,the optimised water jet slotter was practically used in coal seam gas drainage.Compared with conventional dense drilling,water jet slotting technology significantly improves the ability,efficiency,and effect of increasing the permeability of the coal seam.展开更多
The standard k ε turbulence model in conjunction with the logarithmic law of the wall has been applied to the prediction of a fully developed turbulent slot impinging jet within a semi confined space. A single geo...The standard k ε turbulence model in conjunction with the logarithmic law of the wall has been applied to the prediction of a fully developed turbulent slot impinging jet within a semi confined space. A single geometry with a Reynolds number of 10,000 and a nozzle to plate spacing of eight slot widths has been considered with inlet boundary conditions based on the previous calculated result of a fully developed turbulent 2 D flow. The numerical results of mean velocity agree with the experimental data. But the fluctuating velocity is somewhat poorly predicted. The difference between the numerical study and the experimental data is attributed directly to the turbulence model, and the application of the wall function.展开更多
Damage is one of the most important characteristics of rock failure.Studying the damage mechanism of rock blasting under the guiding effect of the water jet slot and revealing the mechanism of controlled blasting with...Damage is one of the most important characteristics of rock failure.Studying the damage mechanism of rock blasting under the guiding effect of the water jet slot and revealing the mechanism of controlled blasting with water jet assistance are crucial.In this study,a rock-like material was chosen as the research object for the calibration experiment of the numerical model.The numerical simulation models were then established by ANSYS/LS-DYNA,and the blastinduced damage mechanism under the guiding effect of the water jet slot was analyzed according to the blasting theory.The results indicated that explosive energy accumulates toward the direction of the slot as the guiding effect of the water jet slot,which allows the rock mass in the direction of the slot bear more damage.Meanwhile,the rock mass in the middle of the connection line between two blast-holes bears more damage under the combination of the effect of the explosion stress wave and guiding effect of water the jet slot on the detonation gas during double-slotted borehole blasting,which results in the formation of a gourd-shaped blast-induced damage area.In addition,the influence of the water jet slot on blast-induced damage varies depending on the blasting-process stage.展开更多
Hydraulic slotting can induce drill spray in a gassy,low permeability coal seam.This then influences subsequent gas extraction.This paper describes the drill spray phenomenon from a mechanical perspective and analyzes...Hydraulic slotting can induce drill spray in a gassy,low permeability coal seam.This then influences subsequent gas extraction.This paper describes the drill spray phenomenon from a mechanical perspective and analyzes the effects of water jet damage during slotting.A simulation of the stresses around the drill hole and slot was prepared using FLAC-3D code.It helps explain the induction of drill spray during hydraulic slotting.The stress concentration around the bore increases as the diameter of the hole increases.As the hole enlarges the variation in stress also increases,which introduces an instability into the coal.This allows easy breaking and removal of the coal.Destruction of the coal structure by the water jet is the major factor causing drill spray.Energy stored as either strain or gas pressure is released by the water jet and this causes the coal to fracture and be expelled from the hole.Field tests showed the effect on gas extraction after slotting with drill spray.The concentration of gas increases after drilling.Compared to conventional techniques,the hydraulic slotted bore gives a gas concentration three times higher and has an effective range twice as far.This makes the gas extraction process more efficient and allows reduced construction effort.展开更多
A method of hydraulic grid slotting and hydraulic fracturing was proposed to enhance the permeability of low permeability coal seam in China. Micro-structural development and strength characteristics of coal were anal...A method of hydraulic grid slotting and hydraulic fracturing was proposed to enhance the permeability of low permeability coal seam in China. Micro-structural development and strength characteristics of coal were analysed to set up the failure criterion of coal containing water and gas, which could describe the destruction rule of coal containing gas under the hydraulic measures more accurately. Based on the theory of transient flow and fluid grid, the numerical calculation model of turbulence formed by high pressure oscillating water jet was used. With the high speed photography test, dynamic evolution and pulsation characteristics of water jet water analysed which laid a foundation for mechanism analysis of rock damage under water jet. Wave equation of oscillating water jet slotting was established and the mechanism of coal damage by the impact stress wave under oscillation jet was revealed. These provide a new method to study the mechanism of porosity and crack damage under high pressure jet.Fracture criterion by jet slotting was established and mechanism of crack development controlled by crack zone between slots was found. The fractures were induced to extend along pre-set direction,instead of being controlled by original stress field. The model of gas migration through coal seams after the hydraulic measures for grid slotting and fracking was established. The key technology and equipment for grid slotting and fracking with high-pressure oscillating jet were developed and applied to coal mines in Chongqing and Henan in China. The results show that the gas permeability of coal seam is enhanced by three orders of magnitude, efficiency of roadway excavation and mining is improved by more than 57%and the cost of gas control is reduced by 50%.展开更多
文摘Flow and heat transfer characteristics of slot jets impingement to a cylindrical convex surface are numerically investigated.Suitable turbulence models have been determined through comparison with the experimental data.Flow structures are described and impingement heat transfer characteristics are discussed.The effects of Re,H/B and D/B on single-slot jets impingement heat transfer are analyzed and heat transfer characteristics of multiple-slot jets are investigated.The results show that:Gas flows along the convex surface and boundary layer separation occurs in both single and multiple-slot jets impingement.A maximum stagnation Nu appears at H/B=8 and the local Nu decreases with increasing H/B in the region far away from the stagnation.The Nu in the stagnation region decreases with increasing D/B but the Nu is nearly the same in the region far away from the stagnation.Pressure gradient is an important factor on heat transfer enhancement.Correlations of the Num for single-slot,double-slot and quadric-slot jets impinging on a convex surface are obtained.It indicates the effects of Re and D/B on Num could become more important in less slot jets impingement.
基金supported by the National Natural Science Foundation of China(No.51322604)
文摘This Article presents a three dimensional numerical model investigating thermal performance and hydrodynamics features of the confined slot jet impingement using slurry of Nano Encapsulated Phase Change Material(NEPCM)as a coolant.The slurry is composed of water as a base fluid and n-octadecane NEPCM particles with mean diameter of 100 nm suspended in it.A single phase fluid approach is employed to model the NEPCM slurry.The thermo physical properties of the NEPCM slurry are computed using modern approaches being proposed recently and governing equations are solved with a commercial Finite Volume based code.The effects of jet Reynolds number varying from 100 to 600 and particle volume fraction ranging from 0% to 28% are considered.The computed results are validated by comparing Nusselt number values at stagnation point with the previously published results with water as working fluid.It was found that adding NEPCM to the base fluid results with considerable amount of heat transfer enhancement.The highest values of heat transfer coefficients are observed at H/W=4 and C_m=0.28.However,due to the higher viscosity of slurry compared with the base fluid,the slurry can produce drastic increase in pressure drop of the system that increases with NEPCM particle loading and jet Reynolds number.
基金supported by the National Natural Science Foundation Outstanding Youth Fund(No.51625401)the Chongqing Natural Science Foundation(No.cstc2018jcyjAX0542)the Program for Changjiang Scholars and Innovative Research Team in Chongqing University(No.IRT17R112).
文摘To investigate the attitude-switching mechanisms of existing jet slotters,which integrate drilling,punching and slotting operations,and to improve its fracture ability,we used the power bond diagram theory to analyse the dynamic flow pressure,and force of slotters.A mathematical model was developed for the dynamic characteristics of slotter systems.Furthermore,to study the effect of the main characteristic parameters on the ability of the nozzle to erode sandstone,multi-orthogonal experiments were carried out.And the optimised slots were applied in later practical operations.The research results show that the inlet fluid passed through the time-varying orifice to generate pressure differential thrust,which overcame the spring force,pushed the valve core to open the side nozzle,and closed the rear cavity channel thereby realising the switch of the slotter attitude.An optimal plan was established to balance the diameter,depth,and volume of punching,and a rock-breaking plan was developed for the slotter.Subsequently,the optimised water jet slotter was practically used in coal seam gas drainage.Compared with conventional dense drilling,water jet slotting technology significantly improves the ability,efficiency,and effect of increasing the permeability of the coal seam.
文摘The standard k ε turbulence model in conjunction with the logarithmic law of the wall has been applied to the prediction of a fully developed turbulent slot impinging jet within a semi confined space. A single geometry with a Reynolds number of 10,000 and a nozzle to plate spacing of eight slot widths has been considered with inlet boundary conditions based on the previous calculated result of a fully developed turbulent 2 D flow. The numerical results of mean velocity agree with the experimental data. But the fluctuating velocity is somewhat poorly predicted. The difference between the numerical study and the experimental data is attributed directly to the turbulence model, and the application of the wall function.
基金support for this work was provided by the Sichuan Natural Science Foundation Project(Youth Science Foundation Project)(No.2022NSFSC1089)the Natural Science Foundation of Southwest University of Science and Technology(No.18zx7124).
文摘Damage is one of the most important characteristics of rock failure.Studying the damage mechanism of rock blasting under the guiding effect of the water jet slot and revealing the mechanism of controlled blasting with water jet assistance are crucial.In this study,a rock-like material was chosen as the research object for the calibration experiment of the numerical model.The numerical simulation models were then established by ANSYS/LS-DYNA,and the blastinduced damage mechanism under the guiding effect of the water jet slot was analyzed according to the blasting theory.The results indicated that explosive energy accumulates toward the direction of the slot as the guiding effect of the water jet slot,which allows the rock mass in the direction of the slot bear more damage.Meanwhile,the rock mass in the middle of the connection line between two blast-holes bears more damage under the combination of the effect of the explosion stress wave and guiding effect of water the jet slot on the detonation gas during double-slotted borehole blasting,which results in the formation of a gourd-shaped blast-induced damage area.In addition,the influence of the water jet slot on blast-induced damage varies depending on the blasting-process stage.
基金support provided by the State Key Basic Research Program of China(No.2011CB201205)the National Natural Science Foundation of China(No.51074161)+3 种基金the National Science and Technology Support Program(No.2012BAK04B07)the project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(No.CXZZ12_0958)the Open Foundation project of Hunan Provincial Key Laboratory of Safe Mining Techniques of Coal Mines(201201)support for the field application and tests of the technology
文摘Hydraulic slotting can induce drill spray in a gassy,low permeability coal seam.This then influences subsequent gas extraction.This paper describes the drill spray phenomenon from a mechanical perspective and analyzes the effects of water jet damage during slotting.A simulation of the stresses around the drill hole and slot was prepared using FLAC-3D code.It helps explain the induction of drill spray during hydraulic slotting.The stress concentration around the bore increases as the diameter of the hole increases.As the hole enlarges the variation in stress also increases,which introduces an instability into the coal.This allows easy breaking and removal of the coal.Destruction of the coal structure by the water jet is the major factor causing drill spray.Energy stored as either strain or gas pressure is released by the water jet and this causes the coal to fracture and be expelled from the hole.Field tests showed the effect on gas extraction after slotting with drill spray.The concentration of gas increases after drilling.Compared to conventional techniques,the hydraulic slotted bore gives a gas concentration three times higher and has an effective range twice as far.This makes the gas extraction process more efficient and allows reduced construction effort.
基金supported by the National Natural Science Foundation of China(Nos.51374258,51504046,51404045)Program for Changjiang Scholars and Innovative Research Team in University of China(No.IRT13043)the National Basic Research Program of China(No.2014CB239206)
文摘A method of hydraulic grid slotting and hydraulic fracturing was proposed to enhance the permeability of low permeability coal seam in China. Micro-structural development and strength characteristics of coal were analysed to set up the failure criterion of coal containing water and gas, which could describe the destruction rule of coal containing gas under the hydraulic measures more accurately. Based on the theory of transient flow and fluid grid, the numerical calculation model of turbulence formed by high pressure oscillating water jet was used. With the high speed photography test, dynamic evolution and pulsation characteristics of water jet water analysed which laid a foundation for mechanism analysis of rock damage under water jet. Wave equation of oscillating water jet slotting was established and the mechanism of coal damage by the impact stress wave under oscillation jet was revealed. These provide a new method to study the mechanism of porosity and crack damage under high pressure jet.Fracture criterion by jet slotting was established and mechanism of crack development controlled by crack zone between slots was found. The fractures were induced to extend along pre-set direction,instead of being controlled by original stress field. The model of gas migration through coal seams after the hydraulic measures for grid slotting and fracking was established. The key technology and equipment for grid slotting and fracking with high-pressure oscillating jet were developed and applied to coal mines in Chongqing and Henan in China. The results show that the gas permeability of coal seam is enhanced by three orders of magnitude, efficiency of roadway excavation and mining is improved by more than 57%and the cost of gas control is reduced by 50%.