Based on the high frequency (HF) integrated radar cross section (RCS) calculation approach, a technique of detecting major scattering source is developed by using an appropriate arithmetic for scattering distribut...Based on the high frequency (HF) integrated radar cross section (RCS) calculation approach, a technique of detecting major scattering source is developed by using an appropriate arithmetic for scattering distribution and scattering source detection. For the perfect adaptability to targets and the HF of the HF integrated RCS calculation platform, this technique is suitable to solve large complex targets and has lower requirement to the target modeling. A comparison with the result of 2-D radar imaging confirms the accuracy and reliability of this technique in recognition of the major scattering source on complex targets. This technique provides the foundation for rapid integrated evaluation of the scattering performance and 3-D scattering model reconstruction of large complex targets.展开更多
In this paper,an adaptive polynomial chaos expansion method(PCE)based on the method of moments(MoM)is proposed to construct surrogate models for electromagnetic scattering and further sensitivity analysis.The MoM is a...In this paper,an adaptive polynomial chaos expansion method(PCE)based on the method of moments(MoM)is proposed to construct surrogate models for electromagnetic scattering and further sensitivity analysis.The MoM is applied to accurately solve the electric field integral equation(EFIE)of electromagnetic scattering from homogeneous dielectric targets.Within the bistatic radar cross section(RCS)as the research object,the adaptive PCE algorithm is devoted to selecting the appropriate order to construct the multivariate surrogate model.The corresponding sensitivity results are given by the further derivative operation,which is compared with those of the finite difference method(FDM).Several examples are provided to demonstrate the effectiveness of the proposed algorithm for sensitivity analysis of electromagnetic scattering from homogeneous dielectric targets.展开更多
The calculation formulas of monostatic radar cross-section (RCS) of arbitrary re-flectors with arbitrarily polarized plane-wave incidence are derived, where the spicular field isobtained by geometrical optics (GO) and...The calculation formulas of monostatic radar cross-section (RCS) of arbitrary re-flectors with arbitrarily polarized plane-wave incidence are derived, where the spicular field isobtained by geometrical optics (GO) and the edge-diffracted field is calculated by the method ofequivalent currents (MEC). Some typical calculated results are given by means of RCS spatialgraphs. For both horizontal and vertical polarizations, the theoretical results obtained in thispaper agree very well with the experimental results as well as the results from uniform theory ofdiffraction.展开更多
The exact radar cross-section (RCS) measurement is difficult when the scattering of targets is low. Ful polarimetric cali-bration is one technique that offers the potential for improving the accuracy of RCS measurem...The exact radar cross-section (RCS) measurement is difficult when the scattering of targets is low. Ful polarimetric cali-bration is one technique that offers the potential for improving the accuracy of RCS measurements. There are numerous polarimetric calibration algorithms. Some complex expressions in these algo-rithms cannot be easily used in an engineering practice. A radar polarimetric coefficients matrix (RPCM) with a simpler expression is presented for the monostatic radar polarization scattering matrix (PSM) measurement. Using a rhombic dihedral corner reflector and a metal ic sphere, the RPCM can be obtained by solving a set of equations, which can be used to find the true PSM for any target. An example for the PSM of a metal ic dish shows that the proposed method obviously improves the accuracy of cross-polarized RCS measurements.展开更多
On the basis of the canard configuration a contour stealth design including chiefly the wing, the fuselage and their connection type is projected. The prime project of a blended wing body vehicle with canard is provid...On the basis of the canard configuration a contour stealth design including chiefly the wing, the fuselage and their connection type is projected. The prime project of a blended wing body vehicle with canard is provided and through the change of the fuselage head form and the different fin disposals, the radar cross section (RCS) is optimized. The average value of RCS and the value of RCS in the ± 45 ° front sector for different designs are illustrated. The model measurement proves that the project having a sharp head fuselage and 30 ° angle double fin has the minimum value of RCS. The wind tunnel test to the model with RCS optimized proved that the vehicle project has excellent aerodynamic characteristics such as high lift curve slope, up to 26° stalling angle, high lift / drag ratio equal to 8, and also has low RCS value in the front sector and in the lateral sector.展开更多
Based on the analytical solution of electromagnetic scattering by a uniaxial anisotropic sphere in the spectral domain, an analytical solution to the electromagnetic scattering by a uniaxial left-handed materials (LHM...Based on the analytical solution of electromagnetic scattering by a uniaxial anisotropic sphere in the spectral domain, an analytical solution to the electromagnetic scattering by a uniaxial left-handed materials (LHMs) sphere is obtained in terms of spherical vector wave functions in a uniaxial anisotropic LHM medium. The expression of the analytical solution contains only some one-dimensional integral which can be calculated easily. Numerical results show that Mie series of plane wave scattering by an isotropic LHM sphere is a special case of the present method. Some numerical results of electromagnetic scattering of a uniaxial anisotropic sphere by a plane wave are given.展开更多
A finite-different time-domain (FDTD) algorithm is applied in this paper to study the bistatic electromagnetic(EM) scattering by a conductive cylinder covered with inhomogeneous, collision, cold, time-varying plas...A finite-different time-domain (FDTD) algorithm is applied in this paper to study the bistatic electromagnetic(EM) scattering by a conductive cylinder covered with inhomogeneous, collision, cold, time-varying plasma. The collision frequency of plasma is a function of the electron density and the pressure of the background gas. The plasma density follows any prescribed distribution function of the rise time of plasma and the radius of the column. The bistatic radar cross section (RCS) of the conductive cylinder covered with inhomogeneous time-varying plasma and inhomogeneous steady-state plasma is calculated under different conditions. The results illustrate that a plasma cloaking system can successfully reduce the RCS of the conductive cylinder.展开更多
As a marked extension of the traditional MoM-PO (method of moment-physical optics) hybrid method, a new hybridization of PO, SBR, and MoM (MoM-SBR/PO) is presented to calculate the multireflection contribution in ...As a marked extension of the traditional MoM-PO (method of moment-physical optics) hybrid method, a new hybridization of PO, SBR, and MoM (MoM-SBR/PO) is presented to calculate the multireflection contribution in the PO region efficiently by introducing the method of SBR based on RDN notion, which avoids the time-consuming iterative procedure and the choice of proper Green's function. As compared with the traditional MoM-PO hybrid method, the calculation efficiency of the proposed method is greatly improved, and its validity is verified by numerical results.展开更多
An external carriage and a wing have a high radar cross section (RCS) level in a wide range of angles of pitch because they form an efficient corner reflector. Coupling scattering between the external carriage and the...An external carriage and a wing have a high radar cross section (RCS) level in a wide range of angles of pitch because they form an efficient corner reflector. Coupling scattering between the external carriage and the wing is controlled by designing a saw tooth structure of the external carriage on condition that the wing structure is not changed. A low RCS saw tooth scheme of the external carriage is given in the paper. The ray tracing method and the physical theory of diffraction are used to calculate the radar scattering characteristics of low RCS structures of the external carriage and wing. The results show that the saw tooth scheme of the external carriage is feasible and effective for low RCS design.展开更多
In this paper,moment methods are applied to solving the electromagnetic scatteringproblems(for both E-and H-polarizations)involving partially coated conducting cylinders.Thecomputer programs have been compiled for gen...In this paper,moment methods are applied to solving the electromagnetic scatteringproblems(for both E-and H-polarizations)involving partially coated conducting cylinders.Thecomputer programs have been compiled for general use.They can be used to solve the electro-magnetic scattering from uncoated,partially coated or entirely coated cylinders of arbitrary crosssectional shape.Numerical examples are also presented to show the validity and versatility of themethod.展开更多
A one-dimensional modified integral equation for electromagnetic scattering from a metallic concentric disc-ring structure is derived by using Fourier expansion and separating the contribution of charge density from c...A one-dimensional modified integral equation for electromagnetic scattering from a metallic concentric disc-ring structure is derived by using Fourier expansion and separating the contribution of charge density from conventional EFIE. In the case of normal incidence, the derived equation is very simple and easy to be solved numerically regardless of the electric dimension of the structure. The comparison between the data of RCS of a disc by using this method and analytical method shows the effectiveness of this approach. Numerical results are also given for current distributions and the scattered fields for a disc-ring structure.展开更多
The radar back-scattering cross section of the carbonfiber is calculated in this paper.The carbon fiber’s crosssection is less than metal fiber’s.The carbon fiber canreduce the scattering of the magnetic wave.
The reduction of TE-scattering by a conducting cylinder with multiple surface impedance loads is investigated. Synthesis procedures are developed to find the optimal loading which result in zero scattering in the desi...The reduction of TE-scattering by a conducting cylinder with multiple surface impedance loads is investigated. Synthesis procedures are developed to find the optimal loading which result in zero scattering in the desired directions or at several frequencies. Numerical results of these procedures are presented. The theoretical predictions are confirmed with an experiment. The proposed synthesis procedure is completely general and can be applied to arbitrarily shaped conducting bodies.展开更多
A novel approach devoted to achieving ultra-wideband radar cross section reduction(RCSR) of a waveguide slot antenna array(WGSAA) while maintaining its radiation performance is proposed. Three kinds of artificial ...A novel approach devoted to achieving ultra-wideband radar cross section reduction(RCSR) of a waveguide slot antenna array(WGSAA) while maintaining its radiation performance is proposed. Three kinds of artificial magnetic conductors(AMCs) tiles consisting of three types of basic units resonant at different frequencies are designed and arranged in a novel quadruple-triangle-type configuration to create a composite planar metasurface. The proposed metasurface is characterized by low radar feature over an ultra-wideband based on the principle of phase cancellation. Both simulated and measured results demonstrate that after the composite metasurface is used to cover part of the antenna array, an ultrawideband RCSR involving in-band and out-of-band is achieved for co-and cross-polarized incident waves based on energy cancellation, while the radiation performance is well retained. The proposed method is simple, low-cost, and easy-tofabricate, providing a new method for ultra-wideband RCSR of an antenna array. Moreover, the method proposed in this paper can easily be applied to other antenna architectures.展开更多
A new method of calculating the radai cross section (RCS) for wing-body blended targets is presented and verified. The method utilizes a computer program for modeling targets' geometry in terms of small pieces. Th...A new method of calculating the radai cross section (RCS) for wing-body blended targets is presented and verified. The method utilizes a computer program for modeling targets' geometry in terms of small pieces. The calculation is based on physical optics approximation. Examples are given to show the validity of the method.展开更多
The present paper deals with the method for the radar cross-section (RCS)computations of arbitrarily complicated targets based on the work by D. Klement et al.(1988).This method is convenient in use, fast in operatio...The present paper deals with the method for the radar cross-section (RCS)computations of arbitrarily complicated targets based on the work by D. Klement et al.(1988).This method is convenient in use, fast in operation and precise in calculating RCS of a complicatedtarget. With this method, the RCS of classic scatterers, for example, a cone and a cylinder, arecomputed with the result of good agreement with experimental data. Furthermore, the RCS’of an aircraft model at various attitudes are calculated with the result of good agreement withexperimental data also.展开更多
Sea surface current has a significant influence on electromagnetic(EM) backscattering signals and may constitute a dominant synthetic aperture radar(SAR) imaging mechanism. An effective EM backscattering model for...Sea surface current has a significant influence on electromagnetic(EM) backscattering signals and may constitute a dominant synthetic aperture radar(SAR) imaging mechanism. An effective EM backscattering model for a one-dimensional drifting fractal sea surface is presented in this paper. This model is used to simulate EM backscattering signals from the drifting sea surface. Numerical results show that ocean currents have a significant influence on EM backscattering signals from the sea surface. The normalized radar cross section(NRCS) discrepancies between the model for a coupled wavecurrent fractal sea surface and the model for an uncoupled fractal sea surface increase with the increase of incidence angle,as well as with increasing ocean currents. Ocean currents that are parallel to the direction of the wave can weaken the EM backscattering signal intensity, while the EM backscattering signal is intensified by ocean currents propagating oppositely to the wave direction. The model presented in this paper can be used to study the SAR imaging mechanism for a drifting sea surface.展开更多
This article presents a method that uses physical optics (PO) techniques to compute the monostatic radar cross section (RCS) of electrically large conducting objects modeled by non-uniform rational B-spline (NURB...This article presents a method that uses physical optics (PO) techniques to compute the monostatic radar cross section (RCS) of electrically large conducting objects modeled by non-uniform rational B-spline (NURBS) surfaces. At the beginning, a new algorithm to convert recursive B-spline basis function into piecewise polynomials in power form is presented. Then, algorithm computes the polynomial representation of B-spline basis functions and NURBS surface geometric parameters are obtained. The PO integral over NURBS surfaces of an electrically large conducting object is used to predict the object's RCS. The NURBS surface is divided into small piecewise polynomial parametric patches by isoparametric curves, and the PO integral expression over the parametric domain of each polynomial parametric patch is reduced to an analytical expression which permits an accurate and effective computation of the PO integral by using a modified Ludwig's algorithm. The RCS of the object can be obtained by adding up the PO integral contribution of each polynomial parametric patch. The effectiveness of this method is verified by numerical examples.展开更多
With the development of coaxial rotors and high-speed helicopters, the electromagnetic scattering characteristics of coaxial helicopters have gradually become a research hotspot. In order to deal with the Radar Cross-...With the development of coaxial rotors and high-speed helicopters, the electromagnetic scattering characteristics of coaxial helicopters have gradually become a research hotspot. In order to deal with the Radar Cross-Section(RCS) of high-speed rotating rotors or coaxial main rotors, a Dynamic Scattering Method(DSM) based on dynamic process simulation and grid coordinate transformation is presented. Instantaneous electromagnetic scattering from rotors and helicopters is solved using Physical Optics(PO) and Physical Theory of Diffraction(PTD). Important factors are analyzed and discussed in detail, including individual rotor rotation, azimuth, elevation angle,fuselage, pitch angle, and roll angle. The results show that the electromagnetic scattering characteristics of rotor-type components are dynamic and periodic. The dynamic RCS period of a single rotor is related to the dynamic RCS period of the coaxial main rotor. Choosing different observation angles and attitude angles has a great impact on the static and dynamic RCS of the helicopter.The presented DSM is effective and efficient to analyze and determine the dynamic electromagnetic scattering characteristics of conventional helicopters or coaxial helicopters.展开更多
The backscattering of light wave from arbitrarily convex dielectric objects withrough surface is investigated and formulas for calculating the backscattering cross-section of bothcoherent and incoherent fields are obt...The backscattering of light wave from arbitrarily convex dielectric objects withrough surface is investigated and formulas for calculating the backscattering cross-section of bothcoherent and incoherent fields are obtained.In the infrared wave-band,the influence of the ge-ometry,permittivity and statistical characteristics of the rough surface on LRCS is analyzed,byusing rough sphere and ellipsoids as examples.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.90305026)
文摘Based on the high frequency (HF) integrated radar cross section (RCS) calculation approach, a technique of detecting major scattering source is developed by using an appropriate arithmetic for scattering distribution and scattering source detection. For the perfect adaptability to targets and the HF of the HF integrated RCS calculation platform, this technique is suitable to solve large complex targets and has lower requirement to the target modeling. A comparison with the result of 2-D radar imaging confirms the accuracy and reliability of this technique in recognition of the major scattering source on complex targets. This technique provides the foundation for rapid integrated evaluation of the scattering performance and 3-D scattering model reconstruction of large complex targets.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(No.62102444)a Major Research Project in Higher Education Institutions in Henan Province(No.23A560015).
文摘In this paper,an adaptive polynomial chaos expansion method(PCE)based on the method of moments(MoM)is proposed to construct surrogate models for electromagnetic scattering and further sensitivity analysis.The MoM is applied to accurately solve the electric field integral equation(EFIE)of electromagnetic scattering from homogeneous dielectric targets.Within the bistatic radar cross section(RCS)as the research object,the adaptive PCE algorithm is devoted to selecting the appropriate order to construct the multivariate surrogate model.The corresponding sensitivity results are given by the further derivative operation,which is compared with those of the finite difference method(FDM).Several examples are provided to demonstrate the effectiveness of the proposed algorithm for sensitivity analysis of electromagnetic scattering from homogeneous dielectric targets.
基金This work is supported by Chinese Research Institute of Electronic Science National Commission of Education, respectively
文摘The calculation formulas of monostatic radar cross-section (RCS) of arbitrary re-flectors with arbitrarily polarized plane-wave incidence are derived, where the spicular field isobtained by geometrical optics (GO) and the edge-diffracted field is calculated by the method ofequivalent currents (MEC). Some typical calculated results are given by means of RCS spatialgraphs. For both horizontal and vertical polarizations, the theoretical results obtained in thispaper agree very well with the experimental results as well as the results from uniform theory ofdiffraction.
基金supported by the National Basic Research Program of China(973 Program)(2010CB731905)
文摘The exact radar cross-section (RCS) measurement is difficult when the scattering of targets is low. Ful polarimetric cali-bration is one technique that offers the potential for improving the accuracy of RCS measurements. There are numerous polarimetric calibration algorithms. Some complex expressions in these algo-rithms cannot be easily used in an engineering practice. A radar polarimetric coefficients matrix (RPCM) with a simpler expression is presented for the monostatic radar polarization scattering matrix (PSM) measurement. Using a rhombic dihedral corner reflector and a metal ic sphere, the RPCM can be obtained by solving a set of equations, which can be used to find the true PSM for any target. An example for the PSM of a metal ic dish shows that the proposed method obviously improves the accuracy of cross-polarized RCS measurements.
文摘On the basis of the canard configuration a contour stealth design including chiefly the wing, the fuselage and their connection type is projected. The prime project of a blended wing body vehicle with canard is provided and through the change of the fuselage head form and the different fin disposals, the radar cross section (RCS) is optimized. The average value of RCS and the value of RCS in the ± 45 ° front sector for different designs are illustrated. The model measurement proves that the project having a sharp head fuselage and 30 ° angle double fin has the minimum value of RCS. The wind tunnel test to the model with RCS optimized proved that the vehicle project has excellent aerodynamic characteristics such as high lift curve slope, up to 26° stalling angle, high lift / drag ratio equal to 8, and also has low RCS value in the front sector and in the lateral sector.
基金Project supported by the National Basic Research Program (973) of China (No. 2004CB719802) and the Natural Science Foundation of Zhejiang Province (No. Y104539), China
文摘Based on the analytical solution of electromagnetic scattering by a uniaxial anisotropic sphere in the spectral domain, an analytical solution to the electromagnetic scattering by a uniaxial left-handed materials (LHMs) sphere is obtained in terms of spherical vector wave functions in a uniaxial anisotropic LHM medium. The expression of the analytical solution contains only some one-dimensional integral which can be calculated easily. Numerical results show that Mie series of plane wave scattering by an isotropic LHM sphere is a special case of the present method. Some numerical results of electromagnetic scattering of a uniaxial anisotropic sphere by a plane wave are given.
基金supported by National Natural Science Foundation of China (No. 60471002)the Natural Science Foundation of Jiangxi Province (No. 0412014)
文摘A finite-different time-domain (FDTD) algorithm is applied in this paper to study the bistatic electromagnetic(EM) scattering by a conductive cylinder covered with inhomogeneous, collision, cold, time-varying plasma. The collision frequency of plasma is a function of the electron density and the pressure of the background gas. The plasma density follows any prescribed distribution function of the rise time of plasma and the radius of the column. The bistatic radar cross section (RCS) of the conductive cylinder covered with inhomogeneous time-varying plasma and inhomogeneous steady-state plasma is calculated under different conditions. The results illustrate that a plasma cloaking system can successfully reduce the RCS of the conductive cylinder.
文摘As a marked extension of the traditional MoM-PO (method of moment-physical optics) hybrid method, a new hybridization of PO, SBR, and MoM (MoM-SBR/PO) is presented to calculate the multireflection contribution in the PO region efficiently by introducing the method of SBR based on RDN notion, which avoids the time-consuming iterative procedure and the choice of proper Green's function. As compared with the traditional MoM-PO hybrid method, the calculation efficiency of the proposed method is greatly improved, and its validity is verified by numerical results.
基金Aeronautical Science F oundation of China!( 97B5 10 40 )
文摘An external carriage and a wing have a high radar cross section (RCS) level in a wide range of angles of pitch because they form an efficient corner reflector. Coupling scattering between the external carriage and the wing is controlled by designing a saw tooth structure of the external carriage on condition that the wing structure is not changed. A low RCS saw tooth scheme of the external carriage is given in the paper. The ray tracing method and the physical theory of diffraction are used to calculate the radar scattering characteristics of low RCS structures of the external carriage and wing. The results show that the saw tooth scheme of the external carriage is feasible and effective for low RCS design.
文摘In this paper,moment methods are applied to solving the electromagnetic scatteringproblems(for both E-and H-polarizations)involving partially coated conducting cylinders.Thecomputer programs have been compiled for general use.They can be used to solve the electro-magnetic scattering from uncoated,partially coated or entirely coated cylinders of arbitrary crosssectional shape.Numerical examples are also presented to show the validity and versatility of themethod.
文摘A one-dimensional modified integral equation for electromagnetic scattering from a metallic concentric disc-ring structure is derived by using Fourier expansion and separating the contribution of charge density from conventional EFIE. In the case of normal incidence, the derived equation is very simple and easy to be solved numerically regardless of the electric dimension of the structure. The comparison between the data of RCS of a disc by using this method and analytical method shows the effectiveness of this approach. Numerical results are also given for current distributions and the scattered fields for a disc-ring structure.
文摘The radar back-scattering cross section of the carbonfiber is calculated in this paper.The carbon fiber’s crosssection is less than metal fiber’s.The carbon fiber canreduce the scattering of the magnetic wave.
文摘The reduction of TE-scattering by a conducting cylinder with multiple surface impedance loads is investigated. Synthesis procedures are developed to find the optimal loading which result in zero scattering in the desired directions or at several frequencies. Numerical results of these procedures are presented. The theoretical predictions are confirmed with an experiment. The proposed synthesis procedure is completely general and can be applied to arbitrarily shaped conducting bodies.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61671464,61701523,and 61471389)
文摘A novel approach devoted to achieving ultra-wideband radar cross section reduction(RCSR) of a waveguide slot antenna array(WGSAA) while maintaining its radiation performance is proposed. Three kinds of artificial magnetic conductors(AMCs) tiles consisting of three types of basic units resonant at different frequencies are designed and arranged in a novel quadruple-triangle-type configuration to create a composite planar metasurface. The proposed metasurface is characterized by low radar feature over an ultra-wideband based on the principle of phase cancellation. Both simulated and measured results demonstrate that after the composite metasurface is used to cover part of the antenna array, an ultrawideband RCSR involving in-band and out-of-band is achieved for co-and cross-polarized incident waves based on energy cancellation, while the radiation performance is well retained. The proposed method is simple, low-cost, and easy-tofabricate, providing a new method for ultra-wideband RCSR of an antenna array. Moreover, the method proposed in this paper can easily be applied to other antenna architectures.
文摘A new method of calculating the radai cross section (RCS) for wing-body blended targets is presented and verified. The method utilizes a computer program for modeling targets' geometry in terms of small pieces. The calculation is based on physical optics approximation. Examples are given to show the validity of the method.
文摘The present paper deals with the method for the radar cross-section (RCS)computations of arbitrarily complicated targets based on the work by D. Klement et al.(1988).This method is convenient in use, fast in operation and precise in calculating RCS of a complicatedtarget. With this method, the RCS of classic scatterers, for example, a cone and a cylinder, arecomputed with the result of good agreement with experimental data. Furthermore, the RCS’of an aircraft model at various attitudes are calculated with the result of good agreement withexperimental data also.
基金Project supported by the National Natural Science Foundation of China(Grant No.41276187)the Global Change Research Program of China(Grant No.2015CB953901)+3 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions,Chinathe Program for the Innovation Research and Entrepreneurship Team in Jiangsu Province,Chinathe Canadian Program on Energy Research and Developmentthe Canadian World Class Tanker Safety Service Program
文摘Sea surface current has a significant influence on electromagnetic(EM) backscattering signals and may constitute a dominant synthetic aperture radar(SAR) imaging mechanism. An effective EM backscattering model for a one-dimensional drifting fractal sea surface is presented in this paper. This model is used to simulate EM backscattering signals from the drifting sea surface. Numerical results show that ocean currents have a significant influence on EM backscattering signals from the sea surface. The normalized radar cross section(NRCS) discrepancies between the model for a coupled wavecurrent fractal sea surface and the model for an uncoupled fractal sea surface increase with the increase of incidence angle,as well as with increasing ocean currents. Ocean currents that are parallel to the direction of the wave can weaken the EM backscattering signal intensity, while the EM backscattering signal is intensified by ocean currents propagating oppositely to the wave direction. The model presented in this paper can be used to study the SAR imaging mechanism for a drifting sea surface.
基金National Natural Science Foundation of China (60831001)Innovation Foundation of Beijing University of Aeronautics and Astronautics for PhD Graduates
文摘This article presents a method that uses physical optics (PO) techniques to compute the monostatic radar cross section (RCS) of electrically large conducting objects modeled by non-uniform rational B-spline (NURBS) surfaces. At the beginning, a new algorithm to convert recursive B-spline basis function into piecewise polynomials in power form is presented. Then, algorithm computes the polynomial representation of B-spline basis functions and NURBS surface geometric parameters are obtained. The PO integral over NURBS surfaces of an electrically large conducting object is used to predict the object's RCS. The NURBS surface is divided into small piecewise polynomial parametric patches by isoparametric curves, and the PO integral expression over the parametric domain of each polynomial parametric patch is reduced to an analytical expression which permits an accurate and effective computation of the PO integral by using a modified Ludwig's algorithm. The RCS of the object can be obtained by adding up the PO integral contribution of each polynomial parametric patch. The effectiveness of this method is verified by numerical examples.
基金supported by the project funded by China Postdoctoral Science Foundationthe Excellence Foundation of Beihang University for Ph Dthe National Natural Science Foundation of China (No. 91641123)。
文摘With the development of coaxial rotors and high-speed helicopters, the electromagnetic scattering characteristics of coaxial helicopters have gradually become a research hotspot. In order to deal with the Radar Cross-Section(RCS) of high-speed rotating rotors or coaxial main rotors, a Dynamic Scattering Method(DSM) based on dynamic process simulation and grid coordinate transformation is presented. Instantaneous electromagnetic scattering from rotors and helicopters is solved using Physical Optics(PO) and Physical Theory of Diffraction(PTD). Important factors are analyzed and discussed in detail, including individual rotor rotation, azimuth, elevation angle,fuselage, pitch angle, and roll angle. The results show that the electromagnetic scattering characteristics of rotor-type components are dynamic and periodic. The dynamic RCS period of a single rotor is related to the dynamic RCS period of the coaxial main rotor. Choosing different observation angles and attitude angles has a great impact on the static and dynamic RCS of the helicopter.The presented DSM is effective and efficient to analyze and determine the dynamic electromagnetic scattering characteristics of conventional helicopters or coaxial helicopters.
文摘The backscattering of light wave from arbitrarily convex dielectric objects withrough surface is investigated and formulas for calculating the backscattering cross-section of bothcoherent and incoherent fields are obtained.In the infrared wave-band,the influence of the ge-ometry,permittivity and statistical characteristics of the rough surface on LRCS is analyzed,byusing rough sphere and ellipsoids as examples.