期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Sludge Pollution Control from Crude Oil Tank Cleaning 被引量:1
1
作者 Christopher C. Adigwe Ify L. Nwaogazie +2 位作者 Ejikeme Ugwoha Adekunle O. David Ndubuisi G. Elemuo 《Journal of Water Resource and Protection》 CAS 2022年第9期632-649,共18页
This study investigated the use of microbial analysis as a bioremediation option for remediating petroleum sludge, which is part of the waste stream generated in the petroleum industry. The aim is to reduce environmen... This study investigated the use of microbial analysis as a bioremediation option for remediating petroleum sludge, which is part of the waste stream generated in the petroleum industry. The aim is to reduce environmental burden caused by the discharge of untreated sludge. Sludge sample was cultured in other to isolate microorganisms for the sludge treatment. The selected strain of the organisms after screening were Aspergillus flavus, Aspergillus niger, Verticillus sp, Penicillum sp, and Microsporium audouinii. Bioreactors (labeled A, B, C, D and O) were designed for the treatment of petroleum sludge. These reactors contain 2.0 × 10<sup>-2</sup> m<sup>3</sup> of the diluted sludge samples and the isolated organisms for the treatment process. On a weekly basis, the control reactors received 1.5 × 10<sup>-3</sup> m<sup>3</sup> of fresh and saline water respectively. After 12 weeks of treatment, sludge physicochemical characteristics showed distinct variations. From the result, reactor D was the best in terms of remediating the sludge as compared to other reactors. Friedman non-parametric test was performed to check if the weeks of treatment affected the reduction of the total hydrocarbon content (THC) in the five reactors and also checked for significant differences in the THC after treatments. The drop in the THC of the treated sludge ranged from 56.0% to 67.3%. These results showed the possibility of enhanced biodegradation of petroleum sludge by hydrocarbon utilizing microorganisms (fungi). 展开更多
关键词 Petroleum sludge sludge Pollution control Crude Oil Tank Cleaning Microbial Analysis BIOREMEDIATION BIOREACTOR
下载PDF
Design of a modern automatic control system for the activated sludge process in wastewater treatment 被引量:2
2
作者 Alexandros D.Kotzapetros Panayotis A.Paraskevas Athanasios S.Stasinakis 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第8期1340-1349,共10页
The Activated Sludge Process(ASP) exhibits highly nonlinear properties. The design of an automatic control system that is robust against disturbance of inlet wastewater flow rate and has short process settling times i... The Activated Sludge Process(ASP) exhibits highly nonlinear properties. The design of an automatic control system that is robust against disturbance of inlet wastewater flow rate and has short process settling times is a challenging matter. The proposed control method is an I-P modi fied controller automatic control system with state variable feedback and control canonical form simulation diagram for the process. A more stable response is achieved with this type of modern control. Settling times of 0.48 days are achieved for the concentration of microorganisms,(reference value step increase of 50 mg·L-1) and 0.01 days for the concentration of oxygen(reference value step increase of 0.1 mg·L-1). Fluctuations of concentrations of oxygen and microorganisms after an inlet disturbance of5 × 103m3·d-1are small. Changes in the reference values of oxygen and microorganisms(increases by 10%, 20% and 30%) show satisfactory response of the system in all cases. Changes in the value of inlet wastewater flow rate disturbance(increases by 10%, 25%, 50% and 100%) are stabilized by the control system in short time. Maximum percent overshoot is also taken in consideration in all cases and the largest value is 25% which is acceptable. The proposed method with I-P controller is better for disturbance rejection and process settling times compared to the same method using PI controller. This method can substitute optimal control systems in ASP. 展开更多
关键词 Activated sludge Modern automatic control PID controllers Root locus Waste treatment
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部