期刊文献+
共找到517篇文章
< 1 2 26 >
每页显示 20 50 100
Development of Liquid Slug Length in Gas-Liquid Slug Flow along Horizontal Pipeline: Experiment and Simulation 被引量:8
1
作者 王鑫 郭烈锦 张西民 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第5期626-633,共8页
The liquid slug length distribution is crucial for designing the downstream processing system with mul-tiphase pipeline. Experiments were conducted in a 133m long horizontal test loop. The measurements were per-formed... The liquid slug length distribution is crucial for designing the downstream processing system with mul-tiphase pipeline. Experiments were conducted in a 133m long horizontal test loop. The measurements were per-formed by conductivity probes to determine the liquid slug length distribution. The data covered both the slug and plug flow regimes. From experimental results, the mean liquid slug lengths were relatively insensitive to gas and liquid flow rates in the higher mixture velocity range. But in the lower mixture velocity range, the mean liquid slug length decreased and then increased with mixture velocity. It shows that the development length of slug flow was longer than x/D=1157. A slug tracking model was adapted to study the evolution of liquid slug length distribution in a horizontal pipeline. In the present model, the wake effect of elongated bubble and the pressure drop due to accel-eration are taken into account and random slug lengths are introduced at the entrance. The results of the model are compared with the measured slug length distributions of slug flow regime. It shows that the predicted mean and maximum slug lengths are in agreement with the experimental data at x/D=1157 and the form of the slug length distributions is also predicted well by the model. 展开更多
关键词 two-phase flow slug flow liquid slug length slug tracking
下载PDF
Slug Flow Characteristics in Inclined and Vertical Channels 被引量:6
2
作者 Zhihui Wang Wei Luo +3 位作者 Ruiquan Liao Xiangwei Xie Fuwei Han Hongying Wang 《Fluid Dynamics & Materials Processing》 EI 2019年第5期583-595,共13页
Horizontal well production technology gradually occupies a dominant position in the petroleum field.With the rise in water production in the later stage of exploitation,slug flow phenomena will exist in horizontal,inc... Horizontal well production technology gradually occupies a dominant position in the petroleum field.With the rise in water production in the later stage of exploitation,slug flow phenomena will exist in horizontal,inclined and even vertical sections of gas wells.To grasp the flow law of slug flow and guide engineering practice,the flow law of slug flow at various inclination angles(30°~90°)is studied by means of the combination of laboratory experiments(including high frequency pressure data acquisition system)and finite element numerical simulation.The results reveal that because of the delay of pressure variation at the corresponding position of pipeline resulting from gas expansion,the highest point of pressure change curve corresponds not to the highest point of liquid holdup curve(pressure change lags behind 0.125 s of liquid holdup change).Thus,the delay of pressure should be highlighted in predicting slug flow using pressure parameter change;otherwise the accuracy of prediction will be affected when slug flow occurs.It is generally known that liquid holdup and pressure drop are the major factors affecting the pressure variation and stable operation of pipelines.Accordingly,the results of finite element numerical simulation and Beggs-Brill model calculation are compared with those of laboratory experiments.The numerical simulation method is applicable to predicting the pressure drop of the pipeline,while the Beggs-Brill model is more suitable for predicting the liquid holdup variation of the pipeline.The research conclusion helps reveal the slug flow law,and it is of a scientific guiding implication to the prediction method of flow parameters under slug flow pattern in the process of gas well exploitation. 展开更多
关键词 slug flow volume liquid holdup PRESSURE pressure drop flow pattern numerical simulation
下载PDF
An Experimental Study of the Flowrate Transients in Slug Flow 被引量:4
3
作者 何利民 郭烈锦 +2 位作者 陈学俊 陈振瑜 寇杰 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2002年第4期396-403,共8页
An investigation of the characteristics of flowrate transientswithin slug flow was conducted in a large- scale outdoor testingfacility. The test section consisted of a 378 m long, 7.62 cmdiameter stainless steel pipe.... An investigation of the characteristics of flowrate transientswithin slug flow was conducted in a large- scale outdoor testingfacility. The test section consisted of a 378 m long, 7.62 cmdiameter stainless steel pipe. Air and water were used as the testfluids. The response to a change of flowrate of either phase or twophases Was measured using a series of pressure transducers anddifferential pressure transducers. An increase or decrease In gasflowrate caused a pressure overshoot above the value at new steadystate or led to a pressure undershoot To form a temporary stratifiedflow. 展开更多
关键词 slug flow flowrate transient pressure overshoot pressure undershoot
下载PDF
An Investigation on the Void Fraction for upward Gas-Liquid Slug Flow in Vertical Pipe 被引量:5
4
作者 夏国栋 周芳德 胡明胜 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2001年第4期436-440,共5页
In order to investigate the influence of the entrance effect on the spatial distribution of phases, the experiments on gas-liquid two-phase slug flow in a vertical pipe of 0.03m ID were carried out by using optical pr... In order to investigate the influence of the entrance effect on the spatial distribution of phases, the experiments on gas-liquid two-phase slug flow in a vertical pipe of 0.03m ID were carried out by using optical probes and an EKTAPRO 1000 high speed motion analyzer. It demonstrates that the radial profile of slug flow void fraction is parabolic. Influenced by the falling liquid film, the radial profile curve of liquid slug void fraction in the wake region is also parabolic. Since fully turbulent velocity distribution is built up in the developed region,the void fraction profile in this region is the saddle type. At given superficial liquid velocity, the liquid slug void fraction increases with gas velocity. The radial profiles of liquid slug void fraction at different axial locations are all saddle curves, but void fraction is obviously high around the centerline in the entrance region. The nearer the measuring station is from the entrance, the farther the peak location is away from the wall. 展开更多
关键词 gas-liquid slug flow void fraction vertical pipe
下载PDF
Simple Model for Gas Holdup and Liquid Velocity of Annular Photocatalytic External-Loop Airlift Reactor Under both Bubble and Developing Slug Flow 被引量:3
5
作者 王一平 陈为强 +2 位作者 黄群武 冯加和 崔勇 《Transactions of Tianjin University》 EI CAS 2016年第3期228-236,共9页
Based on the momentum conservation approach, a theoretical model was developed to predict the superficial liquid velocity, and a correlation equation was established to calculate the gas holdup of an annular external-... Based on the momentum conservation approach, a theoretical model was developed to predict the superficial liquid velocity, and a correlation equation was established to calculate the gas holdup of an annular external-loop airlift reactor(AELAR)in the bubble flow and developing slug flow pattern. Experiments were performed by using tap-water and silicone oil with the viscosity of 2.0 mm^2/s(2cs-SiO)and 5.0 mm^2/s(5cs-SiO)as liquid phases. The effects of liquid viscosity and flow pattern on the AELAR performance were investigated. The predictions of the proposed model were in good agreement with the experimental results of the AELAR. In addition, the comparison of the experimental results shows that the proposed model has good accuracy and could be used to predict the gas holdup and liquid velocity of an AELAR operating in bubble and developing flow pattern. 展开更多
关键词 gas holdup liquid velocity ANNULAR external airlift bubble flow slug flow
下载PDF
Gas-liquid-liquid slug flow and mass transfer in hydrophilic and hydrophobic microreactors 被引量:2
6
作者 Yanyan Liu Chaoqun Yao Guangwen Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第10期85-94,共10页
Gas-liquid-liquid three-phase slug flow was generated in both hydrophilic and hydrophobic microreactors with double T-junctions.The bubble-droplet relative movement and the local mass transfer within the continuous sl... Gas-liquid-liquid three-phase slug flow was generated in both hydrophilic and hydrophobic microreactors with double T-junctions.The bubble-droplet relative movement and the local mass transfer within the continuous slug and the dispersed droplet were investigated.It was found that bubbles moved faster than droplets under low capillary number(Ca),while droplets moved faster upon the increase of Ca due to the increased inertia.For the first time,we observed that the increased viscosity of droplets fastened the droplet movement.The mass transfer in the continuous slug was dominated by convection,leading to nearly constant global mass transfer coefficient(k_(L)a);while that in the dispersed droplet was dominated by diffusion,resulting in k_(L) decreasing along the channel.Such features are analogical to the corresponding gas-liquid or liquid-liquid two-phase slug flow,but the formation of bubble-droplet clusters caused by relative movement lowered the absolute mass transfer coefficient.These results provide insights for the precise manipulation of gas-liquid-liquid slug flow in microreactors towards process optimization. 展开更多
关键词 Mass transfer Multiphase flow slug flow MICROREACTOR Colorimetric method
下载PDF
Investigation on the performance of a helico-axial multiphase pump under slug flow 被引量:2
7
作者 Jia-Xiang Zhang Jin-Ya Zhang +2 位作者 Ye Zhou Zi-Yi-Yi Cheng Guang-Da Cao 《Petroleum Science》 SCIE CAS CSCD 2022年第4期1812-1824,共13页
The helico-axial multiphase pump is often used for gas-liquid mixture transportation in offshore oilfields,and slug flow is the main reason for the unstable operation of the pump.Aimed for slug flow condition,a self-d... The helico-axial multiphase pump is often used for gas-liquid mixture transportation in offshore oilfields,and slug flow is the main reason for the unstable operation of the pump.Aimed for slug flow condition,a self-designed three-stage multiphase pump is set to the object to perform unsteady simulations and fluid-structure interaction calculations,and the inlet gas void fraction(IGVF)is set from 20%to 80%.The results show that affected by the flow from the slug,the gas-liquid two-phase flow pattern in the multiphase pump changes sharply,resulting in severe fluctuations in the differential pressure,spindle torque and deformation of the multiphase pump.The gas-phase enters the first-impeller along the suction blade surface when affected by Taylor bubbles,while the second and third-stage impellers gas-phases are in the form of small air masses flow into the impeller along the pressure blade surface.The deformation trend of impeller torque,differential pressure and the main pump spindle is similar to that of trigonometric function,while the fluctuation of torque is more intense,and the shape variable of spindle increases with the inflow of liquid plug,and the maximum deformation amount increases by10.9%at high GVF relative to IGVF. 展开更多
关键词 Multiphase pump slug flow Gas void fraction(GVF) Hydraulic performance Fluid-structure interaction
下载PDF
Void fraction measurement and calculation model of vertical upward co-current air-water slug flow 被引量:1
8
作者 Teng Wang Miao Gui +2 位作者 Jinle Zhao Qincheng Bi Tao Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第11期178-198,共21页
The focus of this paper is on the measurement and calculation model of void fraction for the vertical upward co-current air-water slug flow in a circular tube of 15 mm inner diameter. High-speed photography and optica... The focus of this paper is on the measurement and calculation model of void fraction for the vertical upward co-current air-water slug flow in a circular tube of 15 mm inner diameter. High-speed photography and optical probes were utilized, with water superficial velocity ranging from 0.089 to 0.65 m·s^(-1)and gas superficial velocity ranging from 0.049 to 0.65 m·s^(-1). A new void fraction model based on the local parameters was proposed, disposing the slug flow as a combination of Taylor bubbles and liquid slugs. In the Taylor bubble region, correction factors of liquid film thickness Cδand nose shape CZ*were proposed to calculate aTB. In the liquid slug region, the radial void fraction distribution profiles were obtained to calculate aLS, by employing the image processing technique based on supervised machine learning. Results showed that the void fraction proportion in Taylor bubbles occupied crucial contribution to the overall void fraction. Multiple types of void fraction predictive correlations were assessed using the present data. The performance of the Schmidt model was optimal, while some models for slug flow performed not outstanding. Additionally, a predictive correlation was correlated between the central local void fraction and the cross-sectional averaged void fraction, as a straightforward form of the void fraction calculation model. The predictive correlation showed a good agreement with the present experimental data, as well as the data of Olerni et al., indicating that the new model was effective and applicable under the slug flow conditions. 展开更多
关键词 slug flow Gas-liquid flow Void fraction MEASUREMENT Optical probe Model
下载PDF
Modeling of liquid film thickness around Taylor bubbles rising in vertical stagnant and co-current slug flowing liquids 被引量:1
9
作者 Weikai Ren Runsong Dai Ningde Jin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期179-194,共16页
The hydrodynamic study of the liquid film around Taylor bubbles in slug flow has great significance for understanding parallel flow and interaction between Taylor bubbles.The prediction models for liquid film thicknes... The hydrodynamic study of the liquid film around Taylor bubbles in slug flow has great significance for understanding parallel flow and interaction between Taylor bubbles.The prediction models for liquid film thickness mainly focus on stagnant flow,and some of them remain inaccurate performance.However,in the industrial process,the slug flow essentially is co-current flow.Therefore,in this paper,the liquid film thickness is studied by theoretical analysis and experimental methods under two conditions of stagnant and co-current flow.Firstly,under the condition of stagnant flow,the present work is based on Batchelor's theory,and modifies Batchelor's liquid film thickness model,which effectively improves its prediction accuracy.Under the condition of co-current flow,the prediction model of average liquid film thickness in slug flow is established by force and motion analysis.Taylor bubble length is introduced into the model as an important parameter.Dynamic experiments were carried out in the pipe with an inner diameter of 20 mm.The liquid film thickness,Taylor bubble velocity and length were measured by distributed ultrasonic sensor and intrusive cross-correlation conductivity sensor.Comparing the predicted value of the model with the measured results,the relative error is controlled within 10%. 展开更多
关键词 slug flow Taylor bubble Liquid film thickness Ultrasonic sensor Physical model
下载PDF
Experimental study on pressure fluctuation characteristics of slug flow in horizontal curved tubes 被引量:1
10
作者 邓志安 Xiao Xue 《High Technology Letters》 EI CAS 2017年第1期23-29,共7页
In order to study the pressure characteristics of slug flow in horizontal curved tubes,two kinds of curved tubes with central angle 45° and 90° respectively are studied,of which are with 0. 5m circumference ... In order to study the pressure characteristics of slug flow in horizontal curved tubes,two kinds of curved tubes with central angle 45° and 90° respectively are studied,of which are with 0. 5m circumference and 26 mm inner diameter are used. When the superficial liquid velocity or the superficial gas velocity is constant,the pressure fluctuations and the probability distribution of the average velocity of slug flow are clear for all of the five experimental conditions. The results of experiment show that the pressure characteristics of slug flow in curved tubes have periodic fluctuations. With the rise of central angle,the period of pressure fluctuation is more obvious. The system pressure of the slug flow increases with the increasing of superficial liquid/gas velocity. Meanwhile,the probability distribution of pressure signal shows regularity,such as unimodal,bimodal or multimodal. 展开更多
关键词 slug flow horizontal curved tube pressure fluctuations central angle
下载PDF
Measurment of gas-liquid two-phase slug flow with a Venturi meter based on blind source separation
11
作者 王微微 梁霄 张明柱 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第9期1447-1452,共6页
We propose a novel flow measurement method for gas–liquid two-phase slug flow by using the blind source separation technique. The flow measurement model is established based on the fluctuation characteristics of diff... We propose a novel flow measurement method for gas–liquid two-phase slug flow by using the blind source separation technique. The flow measurement model is established based on the fluctuation characteristics of differential pressure(DP) signals measured from a Venturi meter. It is demonstrated that DP signals of two-phase flow are a linear mixture of DP signals of single phase fluids. The measurement model is a combination of throttle relationship and blind source separation model. In addition, we estimate the mixture matrix using the independent component analysis(ICA) technique. The mixture matrix could be described using the variances of two DP signals acquired from two Venturi meters. The validity of the proposed model was tested in the gas–liquid twophase flow loop facility. Experimental results showed that for most slug flow the relative error is within 10%.We also find that the mixture matrix is beneficial to investigate the flow mechanism of gas–liquid two-phase flow. 展开更多
关键词 Two-phase slug flow flow measurement Differential pressure Blind source separation Independent component analysis
下载PDF
IMPROVED HYDRODYNAMIC MODEL OF TWO-PHASE SLUG FLOW IN VERTICAL TUBES 被引量:3
12
作者 毛在砂 A.E.Dukler 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1993年第1期20-31,共12页
Merits of the Fernandes model(Fernandes et al.1983)for two-phase slug flow in verticaltubes are reviewed in this paper.While predicting many macroscopic parameters of slug flow in verti-cal tubes,it fails to present c... Merits of the Fernandes model(Fernandes et al.1983)for two-phase slug flow in verticaltubes are reviewed in this paper.While predicting many macroscopic parameters of slug flow in verti-cal tubes,it fails to present correctly the trend that the average voidage in liquid slugs increases asthe rising velocity of Taylor bubbles is increased.It is also desirable to extend its application toelectrolyte systems, and to churn flow conditions.Based on the diagnostic analysis,the model equa-tion for gas entrainment by falling liquid film is reformulated and the influence of surface tension isalso accounted for.Development of the falling liquid film is recognized in the revised model in or-der to suit the case of short Taylor bubbles as well.The modified model predicts the variation of av-erage voidage in liquid slugs in good agreement with available experimental data. 展开更多
关键词 GAS-LIQUID flow slug flow HYDRODYNAMIC model gas ENTRAINMENT
下载PDF
Experimental Investigation of Vibration Response of A Free-Hanging Flexible Riser Induced by Internal Gas-Liquid Slug Flow 被引量:10
13
作者 ZHU Hong-jun ZHAO Hong-lei GAO Yue 《China Ocean Engineering》 SCIE EI CSCD 2018年第6期633-645,共13页
The vibration response of a free-hanging flexible riser induced by internal gas-liquid slug flow was studied experimentally in a small-diameter tube model based on Froude number criterion. The flow regime in a curved ... The vibration response of a free-hanging flexible riser induced by internal gas-liquid slug flow was studied experimentally in a small-diameter tube model based on Froude number criterion. The flow regime in a curved riser model and the response displacements of the riser were simultaneously recorded by high speed cameras. The gas superficial velocity ranges from 0.1 m/s to 0.6 m/s while the liquid superficial velocity from 0.06 m/s to 0.3 m/s.Severe slugging type 3, unstable oscillation flow and relatively stable slug flow were observed in the considered flow rates. Severe slugging type 3 characterized by premature gas penetration occurs at relatively low flow rates. Both the cycle time and slug length become shorter as the gas flow rate increases. The pressure at the riser base undergoes a longer period and larger amplitude of fluctuation as compared with the other two flow regimes. Additionally, severe slugging leads to the most vigorous in-plane vibration. However, the responses in the vertical and horizontal directions are not synchronized. The vertical vibration is dominated by the second mode while the horizontal vibration is dominated by the first mode. Similar to the vortex-induced vibration, three branches are identified as initial branch, build-up branch and descending branch for the response versus the mixture velocity of gas-liquid flow. 展开更多
关键词 gas-liquid two-phase flow severe slugging liquid slug flexible riser flow-induced vibration
下载PDF
Distribution of void fraction for gas-liquid slug flow in aninclined pipe 被引量:2
14
作者 XIA Guo-Dong1, ZHOU Fang-De2, HU Ming-Sheng2 (1 College of Environmental and Energy Engineering, Beijing Polytechnic University, Beijing 100022 2 State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, xi’an 710049) 《Nuclear Science and Techniques》 SCIE CAS CSCD 2001年第2期143-148,共6页
In order to investigate the effect of inclination angle on the spatial distribution of phases, experiments on gas-liquid two-phase slug flow in an inclined pipe were carried out by using the optical probe and an EKTAP... In order to investigate the effect of inclination angle on the spatial distribution of phases, experiments on gas-liquid two-phase slug flow in an inclined pipe were carried out by using the optical probe and an EKTAPRO 1000 high speed motion analyzer. It has been demonstrated that the inclination angle and the mixture velocity are important parameters to influence the distribution of void fraction for upward slug flow in the inclined pipe. At high mixture velocity, the gas phase profile is axial symmetry in the cross-section of the pipe. This is similar to that for vertical slug flow. In contrast, most of the gas phase is located near the upper pipe wall at low mixture velocity. By measuring the axial variation of void fraction along the liquid slug, it can be concluded that there is a high void fraction wake region with length of 3~4D in the front of liquid slug. In the fully developed zone of liquid slug, the peak value of the void fraction is near the upper wall. 展开更多
关键词 气-液二相流 斜管 相分布
下载PDF
The Measurement of Oil,Gas and Water Flowrates in Three-Phase Slug Flow
15
作者 蔡继勇 陈听宽 罗毓珊 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1998年第4期37-43,共7页
Three-sphase flow invo1ving oil-water two immiscible liquids and gas which is often foundin the fields of petroleum production has been studied in this paper.A new method with thecombination of a horizontal tube,a dow... Three-sphase flow invo1ving oil-water two immiscible liquids and gas which is often foundin the fields of petroleum production has been studied in this paper.A new method with thecombination of a horizontal tube,a downward flow vertica1 tube and an orifice to measure theflowrates is presented.In this method the frictional pressure drop in the downward vertical tube isreplaced by that in the horizontal tube,the void fraction is derived from the gravitational pressuredrop,then the volume fraction of the individual phase can also be obtained.The individual flowratescan be calculated when the water fraction is known.This method is applicable for many kinds ofoil-wells to measure the flowrates of crude oil,natural gas and water.Compared with other methods,the presented method involves fewer measuring parameters.The experimental results proved quitegood accuracy of the method,with measurement deviation within 10%,and reliable results wereobtained under high Dressure conditions. 展开更多
关键词 measurement flowrate THREE-PHASE flow slug flow
下载PDF
A MODEL FOR LIQUID SLUG LENGTH DISTRIBUTION IN VERTICAL GAS-LIQUID SLUG FLOW 被引量:7
16
作者 XIA Guo-dong CUI Zhen-zhen +2 位作者 LIU Qing ZHOU Fang-de HU Ming-sheng 《Journal of Hydrodynamics》 SCIE EI CSCD 2009年第4期491-498,共8页
The slug length and the trailing Taylor bubble velocity in an upward vertical slug flow were measured by using the optical probes and the EKTAPRO 1000 high speed motion analyzer. The correlation between the trailing b... The slug length and the trailing Taylor bubble velocity in an upward vertical slug flow were measured by using the optical probes and the EKTAPRO 1000 high speed motion analyzer. The correlation between the trailing bubble velocity and the length of liquid slug ahead of that bubble is derived from the experimental data. Based on this correlation as well as the bubble overtaking mechanism, a model for the slug length distribution at any designated locations along the pipe is proposed. The predicted results are in agreement with the experimental data. 展开更多
关键词 GAS-LIQUID two-phase flow slug flow Taylor bubble liquid slug
原文传递
Determination of slug permeability factor for pressure drop prediction of slug flow pneumatic conveying 被引量:8
17
作者 Kenneth C.Williams Mark G.Jones Tobias Krull 《Particuology》 SCIE EI CAS CSCD 2008年第5期307-315,共9页
Current models for pressure drop prediction of slug flow pneumatic conveying in a horizontal pipeline system assume some type of steady state conditions for prediction, which limits their capability for increased pred... Current models for pressure drop prediction of slug flow pneumatic conveying in a horizontal pipeline system assume some type of steady state conditions for prediction, which limits their capability for increased predictive accuracy relative to experimental data. This is partly because of the nature of slug flow pneumatic conveying system, which, as a dynamic system, never becomes stable. By utilising conservation of mass (airflow), a dynamic pressure analysis model is proposed on the basis of the derivative of the upstream pressure behaviour. The rate of air permeation through slug, one of the important factors in the conservation model, is expressed as a function of a slug permeability factor. Other factors such as slug velocity, slug length and the fraction of stationary layer were also considered. Several test materials were conveyed in single-slug tests to verify the proposed pressure drop model, showing good agreement between the model and experimental results. 展开更多
关键词 slug flow pneumatic conveying Pressure drop Air mass conversation slug permeability factor
原文传递
Experimental Investigation of Slug Development on Horizontal Two-phase Flow 被引量:3
18
作者 顾汉洋 郭烈锦 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第2期171-177,共7页
Slug initiation and subsequem evolution along a 5.0 cm ID, 16m long horizomal pipe are experimentally studied. The transient characteristics of interfacial structures are described by using simultaneous measuremeres o... Slug initiation and subsequem evolution along a 5.0 cm ID, 16m long horizomal pipe are experimentally studied. The transient characteristics of interfacial structures are described by using simultaneous measuremeres of the liquid height at multiple locations along the pipe. Various effects of superficial gas and liquid velocities and pressure oscillation on the slug initiation and evolution along the pipe are illustrated. It is found that the slug is initiated by a deterministic orocess with reolenishmem and deoletion of liquid near the inlet for the superficial gas velocity USG〈3.0m·s^-1 and by a stochastic process with wave coalescence along the pipe for USG〉3.0m·s^-1.The evolution of the slugs is strongly attected by superhclal gas and liquid veloclties for USG〈3.0m·s^-1 but weakly affected by the superficial gas velocity for USG〉3.0 m·s . The suppression of pressure oscillation at the pipe inlet significantly delays the onset of slugging, with slugs forming postponed further downstream. The slug frequency at the outlet is, however, not affected by the variation in the pressure oscillation. 展开更多
关键词 gas-liquid slug flow slug initiation and evolution slug frequency
下载PDF
Effects of the outlet pressure on two-phase slug flow distribution uniformity in a multi-branch microchannel 被引量:2
19
作者 Peng-fei ZHANG Xiang-guo XU +1 位作者 Yong-jun HUA Yu-qi HUANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2022年第1期68-82,共15页
The two-phase flow maldistribution phenomenon in microchannels with multi-parallel branches is inevitable in almost all common conditions,and not only affects the performance of the facility but also increases the ris... The two-phase flow maldistribution phenomenon in microchannels with multi-parallel branches is inevitable in almost all common conditions,and not only affects the performance of the facility but also increases the risk of system instability.In order to better understand the distribution mechanism and to explore a potential strategy to improve uniformity,the pressure evolutions under different split modes in a microchannel with multi-parallel branches,were analyzed numerically.The results show that the fluctuations of transient pressure exhibit similar trends at various split modes,but the time-averaged pressure drops in the branches are very different.This may be related to the maldistribution of mass flow.Thus,the outlet pressures of the branches are numerically changed to explore the relationship between differential pressure and flow distribution.From this study,the flow distribution is seen to display a strong sensitivity to the branch differential pressure.By changing the pressure conditions,the gas flow of the middle branch can be effectively prevented from the main channel,and the flow type in this branch turns from gas-liquid to a single liquid phase.When the differential pressure of the first branch channel changes,the maldistribution phenomenon of the model can be mitigated to a certain extent.Based on this,by adjusting the differential pressures of the second branch,the maldistribution phenomenon can be further mitigated,and the normalized standard deviation(NSTD)decreases from 0.52 to approximately 0.26.The results and conclusions are useful in understanding the two-phase flow distribution mechanism and for seeking optimizing strategies. 展开更多
关键词 Two-phase flow Multi-parallel microchannel flow distribution slug flow Split modes
原文传递
Fluid−Structure Interaction of Two-Phase Flow Passing Through 90° Pipe Bend Under Slug Pattern Conditions 被引量:2
20
作者 WANG Zhi-wei HE Yan-ping +4 位作者 LI Ming-zhi QIU Ming HUANG Chao LIU Ya-dong WANG Zi 《China Ocean Engineering》 SCIE EI CSCD 2021年第6期914-923,共10页
Numerical simulations of evolution characteristics of slug flow across a 90°pipe bend have been carried out to study the fluid−structure interaction response induced by internal slug flow.The two-phase flow patte... Numerical simulations of evolution characteristics of slug flow across a 90°pipe bend have been carried out to study the fluid−structure interaction response induced by internal slug flow.The two-phase flow patterns and turbulence were modelled by using the volume of fluid(VOF)model and the Realizable k−εturbulence model respectively.Firstly,validation of the CFD model was carried out and the desirable results were obtained.The different flow patterns and the time-average mean void fraction was coincident with the reported experimental data.Simulations of different cases of slug flow have been carried out to show the effects of superficial gas and liquid velocity on the evolution characteristics of slug flow.Then,a one-way coupled fluid-structure interaction framework was established to investigate the slug flow interaction with a 90°pipe bend under various superficial liquid and gas velocities.It was found that the maximum total deformation and equivalent stress increased with the increasing superficial gas velocity,while decreased with the increasing superficial liquid velocity.In addition,the total deformation and equivalent stress has obvious periodic fluctuation.Furthermore,the distribution position of maximum deformation and stress was related to the evolution of slug flow.With the increasing superficial gas velocity,the maximum total deformation was mainly located at the 90°pipe bend.But as the superficial liquid velocity increases,the maximum total deformation was mainly located in the horizontal pipe section.Consequently,the slug flow with higher superficial gas velocity will induce more serious cyclical impact on the 90°pipe bend. 展开更多
关键词 two-phase flow 90°pipe bend slug flow fluid−structure interaction dynamic response characteristics
下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部