In order to improve mechanical properties and optimize composition of TiAl-Nb alloys, Ti46 Al5 Nb0.1 B alloys with different contents of Fe(0, 0.3, 0.5, 0.7, 0.9, and 1.1 at.%) were prepared by melting. Macro/microstr...In order to improve mechanical properties and optimize composition of TiAl-Nb alloys, Ti46 Al5 Nb0.1 B alloys with different contents of Fe(0, 0.3, 0.5, 0.7, 0.9, and 1.1 at.%) were prepared by melting. Macro/microstructure and compression properties of the alloys were systematically investigated. Results show that Fe element can decrease the grain size, aggravate the Al-segregation and also form the Fe-rich B2 phase in the interdendritic area. Compressive testing results indicate that the Ti46 Al5 Nb0.1 B0.3 Fe alloy shows the highest ultimate compressive strength and fracture strain, which are 1869.5 MPa and 33.53%, respectively. The improved ultimate compression strength is ascribed to the grain refinement and solid solution strengthening of Fe, and the improved fracture strain is due to the reduced lattice tetragonality of γ phase and grain refinement of the alloys. However, excessive Fe addition decreases compressive strength and fracture strain, which is caused by the severe Al-segregation.展开更多
At different annealing temperatures, the saturation magnetostrictions and the correlation between the permeability μi and the temperature T (μi-T curves) of the Co66Fe4Mo2Si16B12 alloy were investigated using a sm...At different annealing temperatures, the saturation magnetostrictions and the correlation between the permeability μi and the temperature T (μi-T curves) of the Co66Fe4Mo2Si16B12 alloy were investigated using a small-angle magnetization tester and core tester. The experimental results showed that the μi-T curves had different shapes at different ranges of annealing temperature; the permeability μi of the alloy improved with the increase of the annealing temperatures below 460℃; when the alloy was annealed above 480℃, the poor magnetic properties were considered to be caused by larger saturation magnetostriction.展开更多
基金Project(2017YFA0403802)supported by the National Key Research and Development Program of ChinaProject(51825401)supported by the National Natural Science Foundation of ChinaProject(2019TQ0076)supported by the China Postdoctoral Science Foundation。
文摘In order to improve mechanical properties and optimize composition of TiAl-Nb alloys, Ti46 Al5 Nb0.1 B alloys with different contents of Fe(0, 0.3, 0.5, 0.7, 0.9, and 1.1 at.%) were prepared by melting. Macro/microstructure and compression properties of the alloys were systematically investigated. Results show that Fe element can decrease the grain size, aggravate the Al-segregation and also form the Fe-rich B2 phase in the interdendritic area. Compressive testing results indicate that the Ti46 Al5 Nb0.1 B0.3 Fe alloy shows the highest ultimate compressive strength and fracture strain, which are 1869.5 MPa and 33.53%, respectively. The improved ultimate compression strength is ascribed to the grain refinement and solid solution strengthening of Fe, and the improved fracture strain is due to the reduced lattice tetragonality of γ phase and grain refinement of the alloys. However, excessive Fe addition decreases compressive strength and fracture strain, which is caused by the severe Al-segregation.
文摘At different annealing temperatures, the saturation magnetostrictions and the correlation between the permeability μi and the temperature T (μi-T curves) of the Co66Fe4Mo2Si16B12 alloy were investigated using a small-angle magnetization tester and core tester. The experimental results showed that the μi-T curves had different shapes at different ranges of annealing temperature; the permeability μi of the alloy improved with the increase of the annealing temperatures below 460℃; when the alloy was annealed above 480℃, the poor magnetic properties were considered to be caused by larger saturation magnetostriction.