High performance Sm2Fe17Nx magnetic powders were fabricated by ball-milling method and were compacted using spark plasma sintering(SPS) technique.Effects of processing conditions on the magnetic properties and decompo...High performance Sm2Fe17Nx magnetic powders were fabricated by ball-milling method and were compacted using spark plasma sintering(SPS) technique.Effects of processing conditions on the magnetic properties and decomposition dynamic of the magnets were investigated.It is found that higher sintering temperature improves the densification of the magnets, while deteriorates their magnetic properties simultaneously due to the decomposition of the Sm2Fe17Nx.Sintering at lower temperature can preserve the crystal structure of Sm2Fe17Nx compound, while the powders cannot be consolidated into a fully dense compact.An increased compressive pressure leads to better magnetic properties and higher density for the magnet at the same sintering temperature.展开更多
文摘High performance Sm2Fe17Nx magnetic powders were fabricated by ball-milling method and were compacted using spark plasma sintering(SPS) technique.Effects of processing conditions on the magnetic properties and decomposition dynamic of the magnets were investigated.It is found that higher sintering temperature improves the densification of the magnets, while deteriorates their magnetic properties simultaneously due to the decomposition of the Sm2Fe17Nx.Sintering at lower temperature can preserve the crystal structure of Sm2Fe17Nx compound, while the powders cannot be consolidated into a fully dense compact.An increased compressive pressure leads to better magnetic properties and higher density for the magnet at the same sintering temperature.