Mg PSZ ceramics doped with Y 2O 3 and CeO 2 was prepared using traditional processing method. The fine grain PSZ ceramics( d c10 μm) sintered at low temperature(1550 ℃) was obtained by means of composition ...Mg PSZ ceramics doped with Y 2O 3 and CeO 2 was prepared using traditional processing method. The fine grain PSZ ceramics( d c10 μm) sintered at low temperature(1550 ℃) was obtained by means of composition design. The effects of co stabilization of Y 2O 3, CeO 2 and annealing at 1100 ℃ on material composition, microstructure and mechanical properties were studied. The results show that Y 2O 3 and CeO 2 during annealing at 1100 ℃ can inhibit subeutectoid decomposition reaction effectively, and optimize nucleation and growth of t ZrO 2 precipitates in c ZrO 2 matrix phase. The materials show transgranular and intergranular fracture characteristics, and exhibit better mechanical properties owing to the cooperative effect of stress induced transformation toughening and microcrack toughening.展开更多
A series of V2O5‐WO3/TiO2‐ZrO2,V2O5‐WO3/TiO2‐CeO2,and V2O5‐WO3/TiO2‐CeO2‐ZrO2 catalysts were synthesized to improve the selective catalytic reduction(SCR)performance and the K‐poisoning resistance of a V2O5‐W...A series of V2O5‐WO3/TiO2‐ZrO2,V2O5‐WO3/TiO2‐CeO2,and V2O5‐WO3/TiO2‐CeO2‐ZrO2 catalysts were synthesized to improve the selective catalytic reduction(SCR)performance and the K‐poisoning resistance of a V2O5‐WO3/TiO2 catalyst.The physicochemical properties were investigated by using XRD,BET,NH3‐TPD,H2‐TPR,and XPS,and the catalytic performance and K‐poisoning resistance were evaluated via a NH3‐SCR model reaction.Ce^4+and Zr^4+co‐doping were found to enhance the conversion of NOx,and exhibit the best K‐poisoning resistance owing to the largest BET‐specific surface area,pore volume,and total acid site concentration,as well as the minimal effects on the surface acidity and redox ability from K poisoning.The V2O5‐WO3/TiO2‐CeO2‐ZrO2 catalyst also presents outstanding H2O+SO2 tolerance.Finally,the in situ DRIFTS reveals that the NH3‐SCR reaction over the V2O5‐WO3/TiO2‐CeO2‐ZrO2 catalyst follows an L‐H mechanism,and that K poisoning does not change the reaction mechanism.展开更多
The effects of two rare earth oxides such as CeO2 and Sm2O3 on the phase structure and dielectric properties of BaTiO3 ceramic were investigated. Results indicate that the dielectric constant of this system will incre...The effects of two rare earth oxides such as CeO2 and Sm2O3 on the phase structure and dielectric properties of BaTiO3 ceramic were investigated. Results indicate that the dielectric constant of this system will increase greatly with the increasing content of these two oxides, and Ce^4+ substitutes for Ba^2+ located at A-site in ABO3 structure. Quantitative XRD analysis shows that c/a ratio in the sample with addition of CeO2 will increase, which implies the increase of tetragonality in system, causing the augment of dielectric constant, and the decrease of the crystal's geometrical symmetry results in curie-temperature moving towards low temperature; Sm^3+(0.096 nm) substitutes for Ba^2+(0.135 nm) possessing larger radius in A-site and the electrovalency in A-site increases, the mutual effect is strengthened, so the polarization is enhanced, and the dielectric constant increases notablely.展开更多
SmxGdyCe1-x-yO2-δ (x+y=0.2 and x=0, 0.04, 0.08, 0.12, 0.16, 0.2) nanopowders were prepared by a copre-cipitation method. The zeta potential and sedimentation volume of Ce(OH)4 aqueous dispersions at different pH valu...SmxGdyCe1-x-yO2-δ (x+y=0.2 and x=0, 0.04, 0.08, 0.12, 0.16, 0.2) nanopowders were prepared by a copre-cipitation method. The zeta potential and sedimentation volume of Ce(OH)4 aqueous dispersions at different pH values were measured. The isoelectric point (IEP) of Ce(OH)4 suspensions is 7.0. The maximum potential value of -18.5 mV and maximum sedimentation volume of 19 ml are reached at pH=10. The evolution behaviors of the xSm(OH)3·yGd(OH)3·(1-x-y)Ce(OH)4 dried powders in the heating process was characterized by DTA/TG and XRO. The powders decompose to ceria based solid solution at a temperature below 300℃ and forms cubic fluorite structure ceria at about 650℃. The properties of SmxGdyCe1-x-yO2-δ solid solutions were characterized by XRD, TEM and BET. The lattice parameter of doped Ce02 increases linearly with increasing Sm3+ substitution (or decreasing Gd3+ substitution). The particle size of the doped ceria powders is from 5 nm to 10 nm.展开更多
In this work, we study the influence of the average crystallite size and dopant oxide on the reducibility of CeO2-based nanomaterials. Samples were prepared from commercial Gd2O3-, Sm2O3- and Y2O3-doped CeO2 powders b...In this work, we study the influence of the average crystallite size and dopant oxide on the reducibility of CeO2-based nanomaterials. Samples were prepared from commercial Gd2O3-, Sm2O3- and Y2O3-doped CeO2 powders by calcination at different temperatures ranging between 400°C and 900°C and characterized by X-ray powder diffraction, transmission electron microscopy and BET specific surface area. The reducibility of the samples was analyzed by temperature-programmed reduction and in situ dispersive X-ray absorption spectroscopy techniques. Our results clearly demonstrate that samples treated at lower temperatures, of smallest average crystallite size and highest specific surface areas, exhibit the best performance, while Gd2O3-doped ceria materials display higher reducibility than Sm2O3- and Y2O3-doped CeO2.展开更多
To simulate the effects of burnable poison doping in nuclear fuel UO2,Er2O3(or Gd2O3)-doped CeO2 pellets were prepared. Changes in lattice constant and atomic disordering for CeO2 due to the Er2O3 and Gd2O3 doping wer...To simulate the effects of burnable poison doping in nuclear fuel UO2,Er2O3(or Gd2O3)-doped CeO2 pellets were prepared. Changes in lattice constant and atomic disordering for CeO2 due to the Er2O3 and Gd2O3 doping were measured by means of XRD and XAFS. By the Er2O3 doping,the lattice constant decreased,and a disordering of lattice structure was induced in the samples. The doping with Er2O3 also induced the disordering of atomic arrangement around Er atoms,which was observed through the change in XAFS spectra. In contrast,the effect of Gd2O3 doping was smaller than that of Er2O3 doping. The result was discussed in terms of ionic size of dopants in CeO2 crystal.展开更多
文摘Mg PSZ ceramics doped with Y 2O 3 and CeO 2 was prepared using traditional processing method. The fine grain PSZ ceramics( d c10 μm) sintered at low temperature(1550 ℃) was obtained by means of composition design. The effects of co stabilization of Y 2O 3, CeO 2 and annealing at 1100 ℃ on material composition, microstructure and mechanical properties were studied. The results show that Y 2O 3 and CeO 2 during annealing at 1100 ℃ can inhibit subeutectoid decomposition reaction effectively, and optimize nucleation and growth of t ZrO 2 precipitates in c ZrO 2 matrix phase. The materials show transgranular and intergranular fracture characteristics, and exhibit better mechanical properties owing to the cooperative effect of stress induced transformation toughening and microcrack toughening.
基金supported by the National Natural Science Foundation of China(21876168,21507130)the Key Projects for Common Key Technology Innovation in Key Industries in Chongqing(cstc2016zdcy-ztzx0020-01)+2 种基金the Chongqing Science&Technology Commission(cstc2016jcyjA0070,cstckjcxljrc13)the Open Project Program of Chongqing Key Laboratory of Catalysis and Functional Organic Molecules from Chongqing Technology and Business University(1456029)the Graduate Innovation Project of Chongqing Technology and Business University(yjscxx201803-028-22)~~
文摘A series of V2O5‐WO3/TiO2‐ZrO2,V2O5‐WO3/TiO2‐CeO2,and V2O5‐WO3/TiO2‐CeO2‐ZrO2 catalysts were synthesized to improve the selective catalytic reduction(SCR)performance and the K‐poisoning resistance of a V2O5‐WO3/TiO2 catalyst.The physicochemical properties were investigated by using XRD,BET,NH3‐TPD,H2‐TPR,and XPS,and the catalytic performance and K‐poisoning resistance were evaluated via a NH3‐SCR model reaction.Ce^4+and Zr^4+co‐doping were found to enhance the conversion of NOx,and exhibit the best K‐poisoning resistance owing to the largest BET‐specific surface area,pore volume,and total acid site concentration,as well as the minimal effects on the surface acidity and redox ability from K poisoning.The V2O5‐WO3/TiO2‐CeO2‐ZrO2 catalyst also presents outstanding H2O+SO2 tolerance.Finally,the in situ DRIFTS reveals that the NH3‐SCR reaction over the V2O5‐WO3/TiO2‐CeO2‐ZrO2 catalyst follows an L‐H mechanism,and that K poisoning does not change the reaction mechanism.
文摘The effects of two rare earth oxides such as CeO2 and Sm2O3 on the phase structure and dielectric properties of BaTiO3 ceramic were investigated. Results indicate that the dielectric constant of this system will increase greatly with the increasing content of these two oxides, and Ce^4+ substitutes for Ba^2+ located at A-site in ABO3 structure. Quantitative XRD analysis shows that c/a ratio in the sample with addition of CeO2 will increase, which implies the increase of tetragonality in system, causing the augment of dielectric constant, and the decrease of the crystal's geometrical symmetry results in curie-temperature moving towards low temperature; Sm^3+(0.096 nm) substitutes for Ba^2+(0.135 nm) possessing larger radius in A-site and the electrovalency in A-site increases, the mutual effect is strengthened, so the polarization is enhanced, and the dielectric constant increases notablely.
基金The work was supported by the Natural Science Foundation of Inner Mongolia under grant No.20010808.
文摘SmxGdyCe1-x-yO2-δ (x+y=0.2 and x=0, 0.04, 0.08, 0.12, 0.16, 0.2) nanopowders were prepared by a copre-cipitation method. The zeta potential and sedimentation volume of Ce(OH)4 aqueous dispersions at different pH values were measured. The isoelectric point (IEP) of Ce(OH)4 suspensions is 7.0. The maximum potential value of -18.5 mV and maximum sedimentation volume of 19 ml are reached at pH=10. The evolution behaviors of the xSm(OH)3·yGd(OH)3·(1-x-y)Ce(OH)4 dried powders in the heating process was characterized by DTA/TG and XRO. The powders decompose to ceria based solid solution at a temperature below 300℃ and forms cubic fluorite structure ceria at about 650℃. The properties of SmxGdyCe1-x-yO2-δ solid solutions were characterized by XRD, TEM and BET. The lattice parameter of doped Ce02 increases linearly with increasing Sm3+ substitution (or decreasing Gd3+ substitution). The particle size of the doped ceria powders is from 5 nm to 10 nm.
文摘In this work, we study the influence of the average crystallite size and dopant oxide on the reducibility of CeO2-based nanomaterials. Samples were prepared from commercial Gd2O3-, Sm2O3- and Y2O3-doped CeO2 powders by calcination at different temperatures ranging between 400°C and 900°C and characterized by X-ray powder diffraction, transmission electron microscopy and BET specific surface area. The reducibility of the samples was analyzed by temperature-programmed reduction and in situ dispersive X-ray absorption spectroscopy techniques. Our results clearly demonstrate that samples treated at lower temperatures, of smallest average crystallite size and highest specific surface areas, exhibit the best performance, while Gd2O3-doped ceria materials display higher reducibility than Sm2O3- and Y2O3-doped CeO2.
基金Project supported by Japan Society for the Promotion of Science (JSPS) Research (Grant-in-aid for Scientific Research B No. 21360469)the Osaka Nuclear Science Association (ONSA),the XAFS Measurements at KEK-PF were Performed with the Approval of KEK (2009G536)
文摘To simulate the effects of burnable poison doping in nuclear fuel UO2,Er2O3(or Gd2O3)-doped CeO2 pellets were prepared. Changes in lattice constant and atomic disordering for CeO2 due to the Er2O3 and Gd2O3 doping were measured by means of XRD and XAFS. By the Er2O3 doping,the lattice constant decreased,and a disordering of lattice structure was induced in the samples. The doping with Er2O3 also induced the disordering of atomic arrangement around Er atoms,which was observed through the change in XAFS spectra. In contrast,the effect of Gd2O3 doping was smaller than that of Er2O3 doping. The result was discussed in terms of ionic size of dopants in CeO2 crystal.