Roman scattering measurement of ( 1 - x ) GeS2-x Ga2S3 system glasses was conducted in order to understand the microstructural change caused by the addition of Ga2S3 . According to the change of Raman spectra with t...Roman scattering measurement of ( 1 - x ) GeS2-x Ga2S3 system glasses was conducted in order to understand the microstructural change caused by the addition of Ga2S3 . According to the change of Raman spectra with the addition of Ga2S3, two main structural transformations were deduced : the gradual enhancement of ethane- like structural units S3 Ge- GeS3 ( 250 cm ^- 1) and S3 Ga- GaS3 (270 cm ^- 1 ) and the appearance of charge imbalanced units [ Ga2 S2 ( S1/2 )4 ]^2- and [Ga( S1/2 )4 ]^- . And this change of structural aspect seems to give as a clue to understanding the cause of the increased rare-earth solubility.展开更多
The precursors of La0.7Sr0.3-xCaxCo0.9Fe0.1O3-δ(LSCCF, x=0.05, 0.10, 0.15, 0.20) as the cathode materials for intermediate temperature solid oxide fuel cell (ITSOFC) were prepared by reverse titration co-precipitatio...The precursors of La0.7Sr0.3-xCaxCo0.9Fe0.1O3-δ(LSCCF, x=0.05, 0.10, 0.15, 0.20) as the cathode materials for intermediate temperature solid oxide fuel cell (ITSOFC) were prepared by reverse titration co-precipitation method with metal-nitrates as starting materials and mixed alkali (NaOH and Na2CO3) as a precipitating agent. The formation process of LSCCF from the precursors was monitored by TG-DSC, and the crystal structure and particles morphology of the precursors which were calcined at 600, 800, 1000 ℃ for 3 h were characterized using XRD, SEM technologies. Compared with the solid state reaction of constituent oxides, when the pH value of the precipitating solution was in the range of 9.1~9.5, the LSCCF powders from the precursors caclined at 800 ℃ for 3 h had high purity, homogeneous and single perovskite phase. The electrical conductivity of the LSCCF samples sintered at 1200 ℃ for 3 h, which was measured as a function of temperatures from 100 to 800 ℃ by DC four-probe method in air, decreased with x from 0.05 to 0.20. The value of electrical conductivity was almost equal because of Ca2+, Sr2+ co-dopant resulting in the 'mix effect' while x=0.10 or 0.15. The electrical conductivity of all doped samples was higher than 100 S·cm-1 at intermediate temperatures from 500 to 800 ℃, and there was good compatibility between the LSCCF cathode and Ce0.8Sm0.2O2 electrolyte.展开更多
Y_(1-x)Ho_xBa_2Cu_3O_(7-δ)(0<x<1) sinsle crystal thin films oriented with the caxis perpendicular to the sur-face were grown by DC magnetron sputtering technique. Target was pieced together with half of YBa_2Cu...Y_(1-x)Ho_xBa_2Cu_3O_(7-δ)(0<x<1) sinsle crystal thin films oriented with the caxis perpendicular to the sur-face were grown by DC magnetron sputtering technique. Target was pieced together with half of YBa_2Cu_3O_(7-δ)(YBCO) and half of HoBa_2Cu_3O_(7-δ)(HBCO) superconducting materials. As the distance between HBCO targetmaterial and substrate is varied , the Ho content in material is changed respectively. When the content of Ho is0. 7 (atom ratio) , the T_c>83K.展开更多
文摘Roman scattering measurement of ( 1 - x ) GeS2-x Ga2S3 system glasses was conducted in order to understand the microstructural change caused by the addition of Ga2S3 . According to the change of Raman spectra with the addition of Ga2S3, two main structural transformations were deduced : the gradual enhancement of ethane- like structural units S3 Ge- GeS3 ( 250 cm ^- 1) and S3 Ga- GaS3 (270 cm ^- 1 ) and the appearance of charge imbalanced units [ Ga2 S2 ( S1/2 )4 ]^2- and [Ga( S1/2 )4 ]^- . And this change of structural aspect seems to give as a clue to understanding the cause of the increased rare-earth solubility.
基金the National High-Tech Development Plan (2006AA05Z417)the Natural Science Foundation of Lia-oning Province (20062145)the Education department of Liaoning Province (05L073)
文摘The precursors of La0.7Sr0.3-xCaxCo0.9Fe0.1O3-δ(LSCCF, x=0.05, 0.10, 0.15, 0.20) as the cathode materials for intermediate temperature solid oxide fuel cell (ITSOFC) were prepared by reverse titration co-precipitation method with metal-nitrates as starting materials and mixed alkali (NaOH and Na2CO3) as a precipitating agent. The formation process of LSCCF from the precursors was monitored by TG-DSC, and the crystal structure and particles morphology of the precursors which were calcined at 600, 800, 1000 ℃ for 3 h were characterized using XRD, SEM technologies. Compared with the solid state reaction of constituent oxides, when the pH value of the precipitating solution was in the range of 9.1~9.5, the LSCCF powders from the precursors caclined at 800 ℃ for 3 h had high purity, homogeneous and single perovskite phase. The electrical conductivity of the LSCCF samples sintered at 1200 ℃ for 3 h, which was measured as a function of temperatures from 100 to 800 ℃ by DC four-probe method in air, decreased with x from 0.05 to 0.20. The value of electrical conductivity was almost equal because of Ca2+, Sr2+ co-dopant resulting in the 'mix effect' while x=0.10 or 0.15. The electrical conductivity of all doped samples was higher than 100 S·cm-1 at intermediate temperatures from 500 to 800 ℃, and there was good compatibility between the LSCCF cathode and Ce0.8Sm0.2O2 electrolyte.
文摘Y_(1-x)Ho_xBa_2Cu_3O_(7-δ)(0<x<1) sinsle crystal thin films oriented with the caxis perpendicular to the sur-face were grown by DC magnetron sputtering technique. Target was pieced together with half of YBa_2Cu_3O_(7-δ)(YBCO) and half of HoBa_2Cu_3O_(7-δ)(HBCO) superconducting materials. As the distance between HBCO targetmaterial and substrate is varied , the Ho content in material is changed respectively. When the content of Ho is0. 7 (atom ratio) , the T_c>83K.