Microtubules and their regulatory proteins are involved in the regulation of plant cell morphology.SPIRAL1(SPR1),a plant-specific microtubule-binding protein,is critical in regulating the anisotropic growth of plant c...Microtubules and their regulatory proteins are involved in the regulation of plant cell morphology.SPIRAL1(SPR1),a plant-specific microtubule-binding protein,is critical in regulating the anisotropic growth of plant cells.Our previous study showed that overexpressed S alix SmS PR1 genes in Arabidopsis thaliana caused right-handed spiral elongation in etiolated seedlings,but there were no morphological differences between wild-type and transgenic seedlings under varied light conditions.We then studied the transcriptional regulation patterns in transgenic plants engineered with the S mSPR1 gene.Transcriptomic results showed that a large number of differentially expressed genes were involved in plant light signal reception,chlorophyll synthesis and photosystem structure.Eleven gene families with 42 photosynthesis-related genes and 6 light-responsive genes were involved in regulation of cell morphology.Our results showed that these genes in the SmSPR1-ox line were particularly down-regulated under dark conditions.In addition,33 TFs showed differences between S mSPR1-ox and wild-type lines.Taken together,the transcriptome analysis provides new insight into investigating the molecular mechanisms of light-induced cell morphological changes mediated by the microtubule binding protein SPR1.展开更多
基金supported by The Fundamental Research Funds for the Central Non-profit Research Institution of Chinese Academy of Forestry(CAFYBB2018QB001)。
文摘Microtubules and their regulatory proteins are involved in the regulation of plant cell morphology.SPIRAL1(SPR1),a plant-specific microtubule-binding protein,is critical in regulating the anisotropic growth of plant cells.Our previous study showed that overexpressed S alix SmS PR1 genes in Arabidopsis thaliana caused right-handed spiral elongation in etiolated seedlings,but there were no morphological differences between wild-type and transgenic seedlings under varied light conditions.We then studied the transcriptional regulation patterns in transgenic plants engineered with the S mSPR1 gene.Transcriptomic results showed that a large number of differentially expressed genes were involved in plant light signal reception,chlorophyll synthesis and photosystem structure.Eleven gene families with 42 photosynthesis-related genes and 6 light-responsive genes were involved in regulation of cell morphology.Our results showed that these genes in the SmSPR1-ox line were particularly down-regulated under dark conditions.In addition,33 TFs showed differences between S mSPR1-ox and wild-type lines.Taken together,the transcriptome analysis provides new insight into investigating the molecular mechanisms of light-induced cell morphological changes mediated by the microtubule binding protein SPR1.