The relation between the implementation time of small reactor and its market was studied if small reactor could be implemented to be utilized as a base load operation. If the small reactors with 100 or 50 MWe could be...The relation between the implementation time of small reactor and its market was studied if small reactor could be implemented to be utilized as a base load operation. If the small reactors with 100 or 50 MWe could be implemented from 2020, the potential countries could be selected from the view point of the estimated total electricity consumption in 2020 and the stability of the electrical grid system. The commercialization of small reactors should be best done early because the market for these power units as a base load operation might be reduced due to the increase of the electricity consumption in the future after 2020. The implementation program of small reactors for the district heating and electricity supply in Mongolia, which is one of the countries having the interests in small reactor, was investigated and the future implementation plan was proposed too. In order to reduce the air pollution by coal fired heating system, there is an urgent need to start the discussion for the utilization of nuclear district heating reactor in Ulaanbaatar.展开更多
Considering the growing global demand for energy and the need for countries to achieve climate goals,there is an increasing global interest in small modular reactors(SMRs)and their applications.Accident source term an...Considering the growing global demand for energy and the need for countries to achieve climate goals,there is an increasing global interest in small modular reactors(SMRs)and their applications.Accident source term and radiological consequence evaluations of SMRs are key components of nuclear and radiation safety reviews,which affect the site,exclusion area(EAB),and low population zone outer boundaries.Based on the design characteristics of the SMR and accident analysis results,a theoretical model of a whole-core fuel cladding damage accident was constructed to study the radioactivity released into the environment and its consequences.The accident source term and radiation dose calculation models were established to analyze the released amounts of radionuclides and the total effective dose affecting individuals at the site boundary.The results showed that the amount of radionuclides released into the environment after a whole-core fuel cladding damage accident reached 10^(14) Bq,among which the release amount of ^(133)Xe was the largest.The total effective dose at the site boundary 30 days after the accident was 8.65 mSv.The highest total effective dose affecting individuals occurred to the east-north-east.The results of the accident source term and radiological consequence provide technical support for site boundary dose assessments and reviews of SMRs.展开更多
Small reactors have become a new hotspot of international nuclear energy research.The nuclear heating reactor(NHR)technology developed by Tsinghua University is an important multipurpose small reactor solution with fe...Small reactors have become a new hotspot of international nuclear energy research.The nuclear heating reactor(NHR)technology developed by Tsinghua University is an important multipurpose small reactor solution with features such as high integration,modular design and full power natural circulation.A new small reactor based on the existing NHR-200 reactor was developed by the Institute of Nuclear and New Energy Technology of Tsinghua University.A full-scale natural circulation test loop with the same operating parameters as the actual reactor was built in order to experimentally validate the natural circulation ability of the reactor primary loop and heat-transfer ability of fuel assemblies and heat exchangers.Corresponding results are given in detail,including parameter validation of the reactor primary loop,flow rules of the natural circulation and heat-transfer coefficients of heaters and heat exchangers,which can be directly used in the actual reactor as a reference for optimization design.Finally,a characteristic parameter k is proposed to represent the natural circulation ability of a system.By using the new data arrangement method in the form of parameter k,comprehensive experimental results of the natural circulation can be represented by a simple integrated expression.The work in this paper is of importance in broadening application fields and pushing forward commercialization of the NHR type reactors.展开更多
The fast growth in the size and difficulty of nuclear power plant in the 1970s produced an interest in smaller, modest designs that are intrinsically safe over the usage of design features. With the development of nuc...The fast growth in the size and difficulty of nuclear power plant in the 1970s produced an interest in smaller, modest designs that are intrinsically safe over the usage of design features. With the development of nuclear technology, there is the need for revolution in the Maritime sector, especially the advance marine propulsion. In current years, numerous reactor manufacturers are dynamically improving small modular reactor designs with even superior use of safety features. Several designs integrate the ultimate in greater safety. They totally remove specific accident initiators from the design. Other design features benefit to reduce different types of accident or help to mitigate the accident’s consequences. Although some safety features are mutual to maximum SMR designs, irrespective of the coolant technology, other features are specific to liquid-metal cooled, water, gas, or SMR designs. Results: There have been more reactor concepts investigated in the marine propulsion area by different assemblies and research laboratories than in the power generation field, and much can be learned from their experience for land applications. The extensive use of safety features in SMRs potential to make these power plants extremely vigorous, protecting both the public and the investor. Conclusion: For these two considerations, it is recognized that a nuclear reactor is the ideal engine for naval advanced propulsion. The paper will present the work to analyze the concept design of SMRs and design a modular vessel consisting of a propulsion module.展开更多
The United Arab Emirates lacks conventional water resources and relies primarily on desalination plants powered by fossil fuels to produce fresh water.Nuclear desalination is a proven technology,cost-competitive,and s...The United Arab Emirates lacks conventional water resources and relies primarily on desalination plants powered by fossil fuels to produce fresh water.Nuclear desalination is a proven technology,cost-competitive,and sustainable option capable of integrating the existing largescale desalination plants to produce both freshwater and electricity.However,Small Modular Reactors(SMRs)are promising designs with advanced simplified configurations and inherent safety features.In this study,an Integrated Desalination SMR that produces thermal energy compatible with the capacity of a fossil fuel-powered desalination plant in the UAE was designed.First,the APR-1400 reactor core was used to investigate two 150 MWthconceptual SMR core designs,core A and core B,based on two-dimensional parameters,radius,and height.Then,the CASMO-4 lattice code was used to generate homogenized few-group constants for optimized fuel assembly loading patterns.Finally,to find the best core configuration,SIMULATE-3 was used to calculate the core key physics parameters such as power distribution,reactivity coefficients,and critical boron concentration.In addition,different reflector materials were investigated to compensate for the expected high leakage of the small-sized SMR cores.The pan shape core B model(142.6132 cm diameter,100 cm height,and radially reflected by Stainless Steel)was selected as the best core configuration based on its calculated physics parameters.Core B met the design and safety criteria and indicated low total neutron leakage of 11.60%and flat power distribution with 1.50 power peaking factor.Compared to core A,it has a more negative MTC value of-6.93 pcm/°F with lower CBC.In a 2-batch scheme,the fuel is discharged at 42.25 GWd/MTU burnup after a long cycle length of 1.58 years.The core B model offers the highest specific power of 36.56 kW/kgU while utilizing the smallest heavy metal mass compared with the SMART and NuScale models.展开更多
Small modular reactors (SMRs) offer simple, standardized, and safe modular designs for new nuclear reactor construction. They are factory built, requiring smaller initial capital investment and facilitating shorter co...Small modular reactors (SMRs) offer simple, standardized, and safe modular designs for new nuclear reactor construction. They are factory built, requiring smaller initial capital investment and facilitating shorter construction times. SMRs also promise competitive economy when compared with the current reactor fleet. Construction cost of a majority of the projects, which are mostly in their design stages, is not publicly available, but variable costs can be determined from fuel enrichment, average burn-up, and plant thermal efficiency, which are public parameters for many near-term SMR projects. The fuel cost of electricity generation for selected SMRs and large reactors is simulated, including calculation of optimal tails assay in the uranium enrichment process. The results are compared between one another and with current generation large reactor designs providing a rough comparison of the long-term economics of a new nuclear reactor project. SMRs are predicted to have higher fuel costs than large reactors. Particularly, integral pressurized water reactors (iPWRs) are shown to have from 15% to 70% higher fuel costs than large light water reactors using 2014 nuclear fuels market data. Fuel cost sensitivities to reactor design parameters are presented.展开更多
In recent years,various types of surrogate optimization models have been proposed to reduce the computational time and to improve the emulation accuracy.In this study,by leveraging an ANN surrogate model developed ear...In recent years,various types of surrogate optimization models have been proposed to reduce the computational time and to improve the emulation accuracy.In this study,by leveraging an ANN surrogate model developed earlier,a comprehensive and efficient optimization algorithm is conceived for the global optimal design of an integrated regenerative methanol transcritical cycle.It combines a unique converging/diverging classifier model into the surrogate model to form a surrogate-based model,which significantly improves the prediction accuracy of the objective function.Six binary classifiers are explored and the multi-layer feed-forward(MLF)neural network classifier is selected.In addition,within the five global optimizers being explored,the basinhopping(BH)and dual-annealing(DA)are selected.The optimal surrogate-based model and global optimizers are then combined to form a unique surrogate-optimizer model.The surrogate-optimizer model is slightly outperformed by the physics-based model in terms of the optimization results,the time consumption of the surrogate-optimizer model during the optimization searching process is 99%less than that of the physicsbased model.As the results,the surrogate-optimizer model is slightly outperformed by the physics-based model in terms of the optimization results,where the Levelized Cost of Energy(LCOE)of the Surrogate-DA and Surrogate-BH models are 77.912 and 78.876$/MWh,respectively,compared to the 77.190$/MWh of the Baseline model with fairly close penalties between them.In the meantime,the time consumption of the surrogate-optimizer model during the optimization searching process is 99%less than that of the physics-based model.展开更多
文摘The relation between the implementation time of small reactor and its market was studied if small reactor could be implemented to be utilized as a base load operation. If the small reactors with 100 or 50 MWe could be implemented from 2020, the potential countries could be selected from the view point of the estimated total electricity consumption in 2020 and the stability of the electrical grid system. The commercialization of small reactors should be best done early because the market for these power units as a base load operation might be reduced due to the increase of the electricity consumption in the future after 2020. The implementation program of small reactors for the district heating and electricity supply in Mongolia, which is one of the countries having the interests in small reactor, was investigated and the future implementation plan was proposed too. In order to reduce the air pollution by coal fired heating system, there is an urgent need to start the discussion for the utilization of nuclear district heating reactor in Ulaanbaatar.
文摘Considering the growing global demand for energy and the need for countries to achieve climate goals,there is an increasing global interest in small modular reactors(SMRs)and their applications.Accident source term and radiological consequence evaluations of SMRs are key components of nuclear and radiation safety reviews,which affect the site,exclusion area(EAB),and low population zone outer boundaries.Based on the design characteristics of the SMR and accident analysis results,a theoretical model of a whole-core fuel cladding damage accident was constructed to study the radioactivity released into the environment and its consequences.The accident source term and radiation dose calculation models were established to analyze the released amounts of radionuclides and the total effective dose affecting individuals at the site boundary.The results showed that the amount of radionuclides released into the environment after a whole-core fuel cladding damage accident reached 10^(14) Bq,among which the release amount of ^(133)Xe was the largest.The total effective dose at the site boundary 30 days after the accident was 8.65 mSv.The highest total effective dose affecting individuals occurred to the east-north-east.The results of the accident source term and radiological consequence provide technical support for site boundary dose assessments and reviews of SMRs.
基金supported by the National S&T Major Project(Grant No.ZX06901)the National Natural Science Foundation of China(Grant No.11072131)
文摘Small reactors have become a new hotspot of international nuclear energy research.The nuclear heating reactor(NHR)technology developed by Tsinghua University is an important multipurpose small reactor solution with features such as high integration,modular design and full power natural circulation.A new small reactor based on the existing NHR-200 reactor was developed by the Institute of Nuclear and New Energy Technology of Tsinghua University.A full-scale natural circulation test loop with the same operating parameters as the actual reactor was built in order to experimentally validate the natural circulation ability of the reactor primary loop and heat-transfer ability of fuel assemblies and heat exchangers.Corresponding results are given in detail,including parameter validation of the reactor primary loop,flow rules of the natural circulation and heat-transfer coefficients of heaters and heat exchangers,which can be directly used in the actual reactor as a reference for optimization design.Finally,a characteristic parameter k is proposed to represent the natural circulation ability of a system.By using the new data arrangement method in the form of parameter k,comprehensive experimental results of the natural circulation can be represented by a simple integrated expression.The work in this paper is of importance in broadening application fields and pushing forward commercialization of the NHR type reactors.
文摘The fast growth in the size and difficulty of nuclear power plant in the 1970s produced an interest in smaller, modest designs that are intrinsically safe over the usage of design features. With the development of nuclear technology, there is the need for revolution in the Maritime sector, especially the advance marine propulsion. In current years, numerous reactor manufacturers are dynamically improving small modular reactor designs with even superior use of safety features. Several designs integrate the ultimate in greater safety. They totally remove specific accident initiators from the design. Other design features benefit to reduce different types of accident or help to mitigate the accident’s consequences. Although some safety features are mutual to maximum SMR designs, irrespective of the coolant technology, other features are specific to liquid-metal cooled, water, gas, or SMR designs. Results: There have been more reactor concepts investigated in the marine propulsion area by different assemblies and research laboratories than in the power generation field, and much can be learned from their experience for land applications. The extensive use of safety features in SMRs potential to make these power plants extremely vigorous, protecting both the public and the investor. Conclusion: For these two considerations, it is recognized that a nuclear reactor is the ideal engine for naval advanced propulsion. The paper will present the work to analyze the concept design of SMRs and design a modular vessel consisting of a propulsion module.
基金supported by the Office of Vice Chancellor for Research&Graduate Studies,University of Sharjah,under grant no. V.C.R.G./R.1325/2021
文摘The United Arab Emirates lacks conventional water resources and relies primarily on desalination plants powered by fossil fuels to produce fresh water.Nuclear desalination is a proven technology,cost-competitive,and sustainable option capable of integrating the existing largescale desalination plants to produce both freshwater and electricity.However,Small Modular Reactors(SMRs)are promising designs with advanced simplified configurations and inherent safety features.In this study,an Integrated Desalination SMR that produces thermal energy compatible with the capacity of a fossil fuel-powered desalination plant in the UAE was designed.First,the APR-1400 reactor core was used to investigate two 150 MWthconceptual SMR core designs,core A and core B,based on two-dimensional parameters,radius,and height.Then,the CASMO-4 lattice code was used to generate homogenized few-group constants for optimized fuel assembly loading patterns.Finally,to find the best core configuration,SIMULATE-3 was used to calculate the core key physics parameters such as power distribution,reactivity coefficients,and critical boron concentration.In addition,different reflector materials were investigated to compensate for the expected high leakage of the small-sized SMR cores.The pan shape core B model(142.6132 cm diameter,100 cm height,and radially reflected by Stainless Steel)was selected as the best core configuration based on its calculated physics parameters.Core B met the design and safety criteria and indicated low total neutron leakage of 11.60%and flat power distribution with 1.50 power peaking factor.Compared to core A,it has a more negative MTC value of-6.93 pcm/°F with lower CBC.In a 2-batch scheme,the fuel is discharged at 42.25 GWd/MTU burnup after a long cycle length of 1.58 years.The core B model offers the highest specific power of 36.56 kW/kgU while utilizing the smallest heavy metal mass compared with the SMART and NuScale models.
文摘Small modular reactors (SMRs) offer simple, standardized, and safe modular designs for new nuclear reactor construction. They are factory built, requiring smaller initial capital investment and facilitating shorter construction times. SMRs also promise competitive economy when compared with the current reactor fleet. Construction cost of a majority of the projects, which are mostly in their design stages, is not publicly available, but variable costs can be determined from fuel enrichment, average burn-up, and plant thermal efficiency, which are public parameters for many near-term SMR projects. The fuel cost of electricity generation for selected SMRs and large reactors is simulated, including calculation of optimal tails assay in the uranium enrichment process. The results are compared between one another and with current generation large reactor designs providing a rough comparison of the long-term economics of a new nuclear reactor project. SMRs are predicted to have higher fuel costs than large reactors. Particularly, integral pressurized water reactors (iPWRs) are shown to have from 15% to 70% higher fuel costs than large light water reactors using 2014 nuclear fuels market data. Fuel cost sensitivities to reactor design parameters are presented.
基金financial support provided for the study,and Nuclear Regulatory Commission(NRC)for its financial support through the Award No.31310019M0014.
文摘In recent years,various types of surrogate optimization models have been proposed to reduce the computational time and to improve the emulation accuracy.In this study,by leveraging an ANN surrogate model developed earlier,a comprehensive and efficient optimization algorithm is conceived for the global optimal design of an integrated regenerative methanol transcritical cycle.It combines a unique converging/diverging classifier model into the surrogate model to form a surrogate-based model,which significantly improves the prediction accuracy of the objective function.Six binary classifiers are explored and the multi-layer feed-forward(MLF)neural network classifier is selected.In addition,within the five global optimizers being explored,the basinhopping(BH)and dual-annealing(DA)are selected.The optimal surrogate-based model and global optimizers are then combined to form a unique surrogate-optimizer model.The surrogate-optimizer model is slightly outperformed by the physics-based model in terms of the optimization results,the time consumption of the surrogate-optimizer model during the optimization searching process is 99%less than that of the physicsbased model.As the results,the surrogate-optimizer model is slightly outperformed by the physics-based model in terms of the optimization results,where the Levelized Cost of Energy(LCOE)of the Surrogate-DA and Surrogate-BH models are 77.912 and 78.876$/MWh,respectively,compared to the 77.190$/MWh of the Baseline model with fairly close penalties between them.In the meantime,the time consumption of the surrogate-optimizer model during the optimization searching process is 99%less than that of the physics-based model.