The hydrogen deflagration is one of the major risk contributors to threaten the integrity of the containment in a nuclear power plant, and hydrogen control in the case of severe accidents is required by nuclear regula...The hydrogen deflagration is one of the major risk contributors to threaten the integrity of the containment in a nuclear power plant, and hydrogen control in the case of severe accidents is required by nuclear regulations. Based on the large dry containment model developed with the integral severe-accident analysis tool, a small-break loss-of-coolant-accident (LOCA) without HPI, LPI, AFW and containment sprays, leading to the core degradation and large hydrogen generation, is calculated. Hydrogen and steam distribution in containment compartments is investi- gated. The analysis results show that significant hydrogen deflagration risk exits in the reactor coolant pump (RCP) compartment and the cavity during the early period, if no actions are taken to mitigate the effects of hydrogen accu- mulation.展开更多
文摘The hydrogen deflagration is one of the major risk contributors to threaten the integrity of the containment in a nuclear power plant, and hydrogen control in the case of severe accidents is required by nuclear regulations. Based on the large dry containment model developed with the integral severe-accident analysis tool, a small-break loss-of-coolant-accident (LOCA) without HPI, LPI, AFW and containment sprays, leading to the core degradation and large hydrogen generation, is calculated. Hydrogen and steam distribution in containment compartments is investi- gated. The analysis results show that significant hydrogen deflagration risk exits in the reactor coolant pump (RCP) compartment and the cavity during the early period, if no actions are taken to mitigate the effects of hydrogen accu- mulation.