Small tracking error correction for electro-optical systems is essential to improve the tracking precision of future mechanical and defense technology.Aerial threats,such as“low,slow,and small(LSS)”moving targets,po...Small tracking error correction for electro-optical systems is essential to improve the tracking precision of future mechanical and defense technology.Aerial threats,such as“low,slow,and small(LSS)”moving targets,pose increasing challenges to society.The core goal of this work is to address the issues,such as small tracking error correction and aiming control,of electro-optical detection systems by using mechatronics drive modeling,composite velocity–image stability control,and improved interpolation filter design.A tracking controller delay prediction method for moving targets is proposed based on the Euler transformation model of a two-axis,two-gimbal cantilever beam coaxial configuration.Small tracking error formation is analyzed in detail to reveal the scientific mechanism of composite control between the tracking controller’s feedback and the motor’s velocity–stability loop.An improved segmental interpolation filtering algorithm is established by combining line of sight(LOS)position correction and multivariable typical tracking fault diagnosis.Then,a platform with 2 degrees of freedom is used to test the system.An LSS moving target shooting object with a tracking distance of S=100 m,target board area of A=1 m^(2),and target linear velocity of v=5 m/s is simulated.Results show that the optimal method’s distribution probability of the tracking error in a circle with a radius of 1 mrad is 66.7%,and that of the traditional method is 41.6%.Compared with the LOS shooting accuracy of the traditional method,the LOS shooting accuracy of the optimized method is improved by 37.6%.展开更多
A model helicopter is more difficult to control than its full scale counterpart. This is due to its greater sensitivity to control inputs and disturbances as well as higher bandwidth of dynamics. This work is focused ...A model helicopter is more difficult to control than its full scale counterpart. This is due to its greater sensitivity to control inputs and disturbances as well as higher bandwidth of dynamics. This work is focused on designing practical tracking controller for a small scale helicopter following predefined trajectories. A tracking controller based on optimal control theory is synthesized as a part of the development of an autonomous helicopter. Some issues with regards to control constraints are addressed. The weighting between state tracking performance and control power expenditure is analyzed. Overall performance of the control design is evaluated based on its time domain histories of trajectories as well as control inputs.展开更多
High frequency surface wave radar (HFSWR) is well proved to have over the horizon (OTH) detection capability to weak aerial targets, such as concealed airplanes or cruise missiles. The most important problem of detect...High frequency surface wave radar (HFSWR) is well proved to have over the horizon (OTH) detection capability to weak aerial targets, such as concealed airplanes or cruise missiles. The most important problem of detection of fast and small targets using HFSWR is earlier warning, i.e. enlargement of detection range oftargets. Therefore, the detection threshold should be decreased as low as possible, but numerous false alarms are brought about at the same time. On this condition, conventional track initiation techniques, which normally require the probability of false alarm to be at the level of 10-6, will initiate enormous false tracks and lead to abnormal operation of tracking system. An adaptive modified hough transform (AMHT) track initiator is proposed accordingly and the relation of detection range to the performance of track initiator is analyzed in this paper. Simulations are performed to confirm the capability of track initiation to fast and small targets in dense clutter by AMHT track initiator. The tolerable probability of false alarm of detector can reach the level of 10 -3 . And it performs better than track initiator based on modified hough transform (MHT).展开更多
基金funded by the National Natural Science Foundation of China(Grant No.U19A2072)the Provincial Department of Education Postgraduate Scientific Research Innovation Project of Hunan Province of China(Grant No.QL20210007)the Ministerial Level Postgraduate Funding Project of China(Grant No.JY2021A007).
文摘Small tracking error correction for electro-optical systems is essential to improve the tracking precision of future mechanical and defense technology.Aerial threats,such as“low,slow,and small(LSS)”moving targets,pose increasing challenges to society.The core goal of this work is to address the issues,such as small tracking error correction and aiming control,of electro-optical detection systems by using mechatronics drive modeling,composite velocity–image stability control,and improved interpolation filter design.A tracking controller delay prediction method for moving targets is proposed based on the Euler transformation model of a two-axis,two-gimbal cantilever beam coaxial configuration.Small tracking error formation is analyzed in detail to reveal the scientific mechanism of composite control between the tracking controller’s feedback and the motor’s velocity–stability loop.An improved segmental interpolation filtering algorithm is established by combining line of sight(LOS)position correction and multivariable typical tracking fault diagnosis.Then,a platform with 2 degrees of freedom is used to test the system.An LSS moving target shooting object with a tracking distance of S=100 m,target board area of A=1 m^(2),and target linear velocity of v=5 m/s is simulated.Results show that the optimal method’s distribution probability of the tracking error in a circle with a radius of 1 mrad is 66.7%,and that of the traditional method is 41.6%.Compared with the LOS shooting accuracy of the traditional method,the LOS shooting accuracy of the optimized method is improved by 37.6%.
文摘A model helicopter is more difficult to control than its full scale counterpart. This is due to its greater sensitivity to control inputs and disturbances as well as higher bandwidth of dynamics. This work is focused on designing practical tracking controller for a small scale helicopter following predefined trajectories. A tracking controller based on optimal control theory is synthesized as a part of the development of an autonomous helicopter. Some issues with regards to control constraints are addressed. The weighting between state tracking performance and control power expenditure is analyzed. Overall performance of the control design is evaluated based on its time domain histories of trajectories as well as control inputs.
文摘High frequency surface wave radar (HFSWR) is well proved to have over the horizon (OTH) detection capability to weak aerial targets, such as concealed airplanes or cruise missiles. The most important problem of detection of fast and small targets using HFSWR is earlier warning, i.e. enlargement of detection range oftargets. Therefore, the detection threshold should be decreased as low as possible, but numerous false alarms are brought about at the same time. On this condition, conventional track initiation techniques, which normally require the probability of false alarm to be at the level of 10-6, will initiate enormous false tracks and lead to abnormal operation of tracking system. An adaptive modified hough transform (AMHT) track initiator is proposed accordingly and the relation of detection range to the performance of track initiator is analyzed in this paper. Simulations are performed to confirm the capability of track initiation to fast and small targets in dense clutter by AMHT track initiator. The tolerable probability of false alarm of detector can reach the level of 10 -3 . And it performs better than track initiator based on modified hough transform (MHT).