This study research attempts to prohibit privacy and loss of money for individuals and organization by creating a reliable model which can detect the fraud exposure in the online recruitment environments. This researc...This study research attempts to prohibit privacy and loss of money for individuals and organization by creating a reliable model which can detect the fraud exposure in the online recruitment environments. This research presents a major contribution represented in a reliable detection model using ensemble approach based on Random forest classifier to detect Online Recruitment Fraud (ORF). The detection of Online Recruitment Fraud is characterized by other types of electronic fraud detection by its modern and the scarcity of studies on this concept. The researcher proposed the detection model to achieve the objectives of this study. For feature selection, support vector machine method is used and for classification and detection, ensemble classifier using Random Forest is employed. A freely available dataset called Employment Scam Aegean Dataset (EMSCAD) is used to apply the model. Pre-processing step had been applied before the selection and classification adoptions. The results showed an obtained accuracy of 97.41%. Further, the findings presented the main features and important factors in detection purpose include having a company profile feature, having a company logo feature and an industry feature.展开更多
Frauds don’t follow any recurring patterns.They require the use of unsupervised learning since their behaviour is continually changing.Fraud-sters have access to the most recent technology,which gives them the abilit...Frauds don’t follow any recurring patterns.They require the use of unsupervised learning since their behaviour is continually changing.Fraud-sters have access to the most recent technology,which gives them the ability to defraud people through online transactions.Fraudsters make assumptions about consumers’routine behaviour,and fraud develops swiftly.Unsupervised learning must be used by fraud detection systems to recognize online payments since some fraudsters start out using online channels before moving on to other techniques.Building a deep convolutional neural network model to identify anomalies from conventional competitive swarm optimization pat-terns with a focus on fraud situations that cannot be identified using historical data or supervised learning is the aim of this paper Artificial Bee Colony(ABC).Using real-time data and other datasets that are readily available,the ABC-Recurrent Neural Network(RNN)categorizes fraud behaviour and compares it to the current algorithms.When compared to the current approach,the findings demonstrate that the accuracy is high and the training error is minimal in ABC_RNN.In this paper,we measure the Accuracy,F1 score,Mean Square Error(MSE)and Mean Absolute Error(MAE).Our system achieves 97%accuracy,92%precision rate and F1 score 97%.Also we compare the simulation results with existing methods.展开更多
With the broad reach of Internet, online reviews have become an important source of electronic Word-of-Mouth. Fraud reviews that are deliberately posted by businesses are a type of online reviews. This paper discusses...With the broad reach of Internet, online reviews have become an important source of electronic Word-of-Mouth. Fraud reviews that are deliberately posted by businesses are a type of online reviews. This paper discusses the incentives of fraud reviews and the effect of fraud reviews on consumer behavior through empirical research. Using book download data at Amazon, we find that a book is more likely to manipulate fraud reviews when it has few online reviews posted by real consumers, higher proportion of negative reviews, longer average length of negative reviews, lower average rating scored by real users and higher price. And fraud reviews change the review environment and have a significant impact on the consumer purchasing decisions. More number, higher proportion, longer word count and higher promotion of rating of fraud reviews lead to higher sales. The results also show consumers can discern the manipulation of fraud reviews to a certain extent.展开更多
文摘This study research attempts to prohibit privacy and loss of money for individuals and organization by creating a reliable model which can detect the fraud exposure in the online recruitment environments. This research presents a major contribution represented in a reliable detection model using ensemble approach based on Random forest classifier to detect Online Recruitment Fraud (ORF). The detection of Online Recruitment Fraud is characterized by other types of electronic fraud detection by its modern and the scarcity of studies on this concept. The researcher proposed the detection model to achieve the objectives of this study. For feature selection, support vector machine method is used and for classification and detection, ensemble classifier using Random Forest is employed. A freely available dataset called Employment Scam Aegean Dataset (EMSCAD) is used to apply the model. Pre-processing step had been applied before the selection and classification adoptions. The results showed an obtained accuracy of 97.41%. Further, the findings presented the main features and important factors in detection purpose include having a company profile feature, having a company logo feature and an industry feature.
文摘Frauds don’t follow any recurring patterns.They require the use of unsupervised learning since their behaviour is continually changing.Fraud-sters have access to the most recent technology,which gives them the ability to defraud people through online transactions.Fraudsters make assumptions about consumers’routine behaviour,and fraud develops swiftly.Unsupervised learning must be used by fraud detection systems to recognize online payments since some fraudsters start out using online channels before moving on to other techniques.Building a deep convolutional neural network model to identify anomalies from conventional competitive swarm optimization pat-terns with a focus on fraud situations that cannot be identified using historical data or supervised learning is the aim of this paper Artificial Bee Colony(ABC).Using real-time data and other datasets that are readily available,the ABC-Recurrent Neural Network(RNN)categorizes fraud behaviour and compares it to the current algorithms.When compared to the current approach,the findings demonstrate that the accuracy is high and the training error is minimal in ABC_RNN.In this paper,we measure the Accuracy,F1 score,Mean Square Error(MSE)and Mean Absolute Error(MAE).Our system achieves 97%accuracy,92%precision rate and F1 score 97%.Also we compare the simulation results with existing methods.
文摘With the broad reach of Internet, online reviews have become an important source of electronic Word-of-Mouth. Fraud reviews that are deliberately posted by businesses are a type of online reviews. This paper discusses the incentives of fraud reviews and the effect of fraud reviews on consumer behavior through empirical research. Using book download data at Amazon, we find that a book is more likely to manipulate fraud reviews when it has few online reviews posted by real consumers, higher proportion of negative reviews, longer average length of negative reviews, lower average rating scored by real users and higher price. And fraud reviews change the review environment and have a significant impact on the consumer purchasing decisions. More number, higher proportion, longer word count and higher promotion of rating of fraud reviews lead to higher sales. The results also show consumers can discern the manipulation of fraud reviews to a certain extent.