Recently, it is predicted that the fossil fuels will be sufficient for a few decades at the present extraction rates. So, the performance studies of the internal combustion engines play an important role to achieve th...Recently, it is predicted that the fossil fuels will be sufficient for a few decades at the present extraction rates. So, the performance studies of the internal combustion engines play an important role to achieve the best operating point at different weather temperatures. In the present study, the effects of the inlet air temperatures on the engine performance characteristics were studied at different cooling loads. Several experiments were carried out on a single cylinder diesel engine (SCDI). The performance characteristics of SCDI included: brake power, specific fuel consumption, brake thermal efficiency and exhaust emissions (carbon dioxide, CO2, carbon monoxide CO, and hydrocarbon HC). The findings show that the inlet air temperature and cooling conditions have appreciable effect on the performance characteristics of the SCDI especially at low cooling rate. It can be concluded that the high cooling rate leads to the enhancement in the brake thermal efficiency, the b.s.f.c, and the emitted COz, CO, and HC. On the other hand the high cooling rate leads to the decrease in the volumetric efficiency. So, a compromising between the inlet air temperature and the cooling rate should be recommended for the engine best performance.展开更多
First, the geometry model and the calculation mesh of single-cylinder direct injection diesel engine are built, using ESE module of the 3D simulation software AVL FIRE v2014 [1]. Then, by setting appropriate boundary ...First, the geometry model and the calculation mesh of single-cylinder direct injection diesel engine are built, using ESE module of the 3D simulation software AVL FIRE v2014 [1]. Then, by setting appropriate boundary condition, initial condition and calculating step length, and selecting spray, the burning emissions on model and on the basis of adjusting the parameters, a scientific and reasonable simulation platform is built. Emission characteristics of single-cylinder diesel engines in oxygen-enriched, oxygen-enriched + EGR (inlet adding CO<sub>2</sub>), and separately using EGR would be studied. It is concluded that EGR synergy oxygen-enriched combustion is beneficial to exhaust treatment and 21% CO<sub>2</sub> + 23% oxygen content is the optimal matching to improve diesel engine exhaust emissions.展开更多
以某小型非道路柴油机为样机,搭建了柴油机缸内喷雾燃烧过程可视化研究平台,进行缸内燃烧过程高速摄影研究,分析内部废气再循环(Internal Exhaust Gas Recirculation,IEGR)对小型非道路柴油机燃烧及排放性能的影响规律。结果表明,引入I...以某小型非道路柴油机为样机,搭建了柴油机缸内喷雾燃烧过程可视化研究平台,进行缸内燃烧过程高速摄影研究,分析内部废气再循环(Internal Exhaust Gas Recirculation,IEGR)对小型非道路柴油机燃烧及排放性能的影响规律。结果表明,引入IEGR会缩短滞燃期,延长燃烧持续期。IEGR在低负荷时可提高缸内燃烧温度,在中高负荷时则可以降低缸内燃烧温度。随着IEGR率增大,NOx逐渐降低,且这种降低的趋势随负荷率的增加愈趋明显,SOOT均有一定程度的升高,但并未严重恶化。IEGR对柴油机油耗有一定的改善效果,且随负荷率的减小,IEGR对油耗率的改善效果增强。展开更多
文摘Recently, it is predicted that the fossil fuels will be sufficient for a few decades at the present extraction rates. So, the performance studies of the internal combustion engines play an important role to achieve the best operating point at different weather temperatures. In the present study, the effects of the inlet air temperatures on the engine performance characteristics were studied at different cooling loads. Several experiments were carried out on a single cylinder diesel engine (SCDI). The performance characteristics of SCDI included: brake power, specific fuel consumption, brake thermal efficiency and exhaust emissions (carbon dioxide, CO2, carbon monoxide CO, and hydrocarbon HC). The findings show that the inlet air temperature and cooling conditions have appreciable effect on the performance characteristics of the SCDI especially at low cooling rate. It can be concluded that the high cooling rate leads to the enhancement in the brake thermal efficiency, the b.s.f.c, and the emitted COz, CO, and HC. On the other hand the high cooling rate leads to the decrease in the volumetric efficiency. So, a compromising between the inlet air temperature and the cooling rate should be recommended for the engine best performance.
文摘First, the geometry model and the calculation mesh of single-cylinder direct injection diesel engine are built, using ESE module of the 3D simulation software AVL FIRE v2014 [1]. Then, by setting appropriate boundary condition, initial condition and calculating step length, and selecting spray, the burning emissions on model and on the basis of adjusting the parameters, a scientific and reasonable simulation platform is built. Emission characteristics of single-cylinder diesel engines in oxygen-enriched, oxygen-enriched + EGR (inlet adding CO<sub>2</sub>), and separately using EGR would be studied. It is concluded that EGR synergy oxygen-enriched combustion is beneficial to exhaust treatment and 21% CO<sub>2</sub> + 23% oxygen content is the optimal matching to improve diesel engine exhaust emissions.
文摘以某小型非道路柴油机为样机,搭建了柴油机缸内喷雾燃烧过程可视化研究平台,进行缸内燃烧过程高速摄影研究,分析内部废气再循环(Internal Exhaust Gas Recirculation,IEGR)对小型非道路柴油机燃烧及排放性能的影响规律。结果表明,引入IEGR会缩短滞燃期,延长燃烧持续期。IEGR在低负荷时可提高缸内燃烧温度,在中高负荷时则可以降低缸内燃烧温度。随着IEGR率增大,NOx逐渐降低,且这种降低的趋势随负荷率的增加愈趋明显,SOOT均有一定程度的升高,但并未严重恶化。IEGR对柴油机油耗有一定的改善效果,且随负荷率的减小,IEGR对油耗率的改善效果增强。