针对非高斯噪声条件下利用传统模糊函数的到达时差(time difference of arrival,TDOA)和到达频差(frequency difference of arrival,FDOA)联合估计方法性能退化问题,提出一种基于最小1-范数准则模糊函数的联合TDOA/FDOA估计算法。在给...针对非高斯噪声条件下利用传统模糊函数的到达时差(time difference of arrival,TDOA)和到达频差(frequency difference of arrival,FDOA)联合估计方法性能退化问题,提出一种基于最小1-范数准则模糊函数的联合TDOA/FDOA估计算法。在给出1-范数模糊函数概念的基础上,提出一种存在重尾分布α稳定噪声条件下的联合TDOA/FDOA估计算法。仿真实验结果表明,与传统模糊函数以及分数低阶矩(fractional lower order moments,FLOM)方法相比,该算法能够更好地逼近克拉美罗界(Cramér-Rao lower bounds,CRLB),且在鲁棒性和估计精度等方面性能明显提升。展开更多
文摘针对非高斯噪声条件下利用传统模糊函数的到达时差(time difference of arrival,TDOA)和到达频差(frequency difference of arrival,FDOA)联合估计方法性能退化问题,提出一种基于最小1-范数准则模糊函数的联合TDOA/FDOA估计算法。在给出1-范数模糊函数概念的基础上,提出一种存在重尾分布α稳定噪声条件下的联合TDOA/FDOA估计算法。仿真实验结果表明,与传统模糊函数以及分数低阶矩(fractional lower order moments,FLOM)方法相比,该算法能够更好地逼近克拉美罗界(Cramér-Rao lower bounds,CRLB),且在鲁棒性和估计精度等方面性能明显提升。