This paper addresses the problem of predicting population density leveraging cellular station data.As wireless communication devices are commonly used,cellular station data has become integral for estimating populatio...This paper addresses the problem of predicting population density leveraging cellular station data.As wireless communication devices are commonly used,cellular station data has become integral for estimating population figures and studying their movement,thereby implying significant contributions to urban planning.However,existing research grapples with issues pertinent to preprocessing base station data and the modeling of population prediction.To address this,we propose methodologies for preprocessing cellular station data to eliminate any irregular or redundant data.The preprocessing reveals a distinct cyclical characteristic and high-frequency variation in population shift.Further,we devise a multi-view enhancement model grounded on the Transformer(MVformer),targeting the improvement of the accuracy of extended time-series population predictions.Comparative experiments,conducted on the above-mentioned population dataset using four alternate Transformer-based models,indicate that our proposedMVformer model enhances prediction accuracy by approximately 30%for both univariate and multivariate time-series prediction assignments.The performance of this model in tasks pertaining to population prediction exhibits commendable results.展开更多
To address air pollution and offer a convenient and comfortable living environment,the Chinese government launched a smart city pilot(SCP)project in 2012,accompanied by a comprehensive set of environmental and energy-...To address air pollution and offer a convenient and comfortable living environment,the Chinese government launched a smart city pilot(SCP)project in 2012,accompanied by a comprehensive set of environmental and energy-related laws and regulations.Although academic interest in smart cities has surged,there remains a notable gap in empirical research exploring the economic,environmental,and energy effects of such initiatives.Taking 232 prefecture-level cities from 2003 to 2017 as research subjects,this study measures energy effi‐ciency by using energy consumption per unit of GDP and adopts a difference-in-differences(DID)analysis to investigate the impact of SCPs on energy efficiency.The empirical results indicate that SCPs improved energy efficiency by promoting urban technological innovation capabilities and green total factor productivity,and this effect was more pronounced in cities that were more dependent on traditional fossil fuel energy sources and had more developed fiscal and financial levels.Studying the impact of smart city construction on energy utilization efficiency in developing countries,such as China,is not only significantly enlightening for China’s green and low-carbon transition but also provides reference opinions for constructing smart cities and the path to enhancing energy efficiency in other developing countries.The findings provide valuable insights into the global development of smart cities,urban sustainability,and high-quality economic growth.展开更多
This study investigated the integration of geospatial technologies within smart city frameworks to achieve the European Union’s climate neutrality goals by 2050. Focusing on rapid urbanization and escalating climate ...This study investigated the integration of geospatial technologies within smart city frameworks to achieve the European Union’s climate neutrality goals by 2050. Focusing on rapid urbanization and escalating climate challenges, the research analyzed how smart city frameworks, aligned with climate neutrality objectives, leverage geospatial technologies for urban planning and climate action. The study included case studies from three leading European cities, extracting lessons and best practices in implementing Climate City Contracts across sectors like energy, transport, and waste management. These insights highlighted the essential role of EU and national authorities in providing technical, regulatory, and financial support. Additionally, the paper presented the application of a WEBGIS platform in Limassol Municipality, Cyprus, demonstrating citizen engagement and acceptance of the proposed geospatial framework. Concluding with recommendations for future research, the study contributed significant insights into the advancement of urban sustainability and the effectiveness of geospatial technologies in smart city initiatives for combating climate change.展开更多
In recent years,all walks of life have begun to propose the construction of“smart cities”.It is hoped that the construction of“smart cities”can pro-mote the transformation and upgrading of urban development and ma...In recent years,all walks of life have begun to propose the construction of“smart cities”.It is hoped that the construction of“smart cities”can pro-mote the transformation and upgrading of urban development and make our cities prosperous and sustainable.In the future,urban construction is very likely to develop in the direction of intelligence and intelligence,and a scientific and effective understanding and objective evaluation of the devel-opment status of China’s smart cities will be conducive to the planning and design of China’s smart cities in the new era,formulate scientific construc-tion policies,and strengthen the supervision and guidance of construction.At present,as far as China is concerned,the urbanization process is accel-erating,the urbanization rate is increasing year by year,and the level of urbanization has increased significantly,and people are beginning to think about how to better combine technology and services to serve the people.Smart cities,as one of the concerns,may be able to better solve this kind of problem.展开更多
Rail transit is considered one of the safest and most efficient modes of transportation.Ticketing,vehicle dispatching,and passenger flow control during rail transit operations in China have been improving over the yea...Rail transit is considered one of the safest and most efficient modes of transportation.Ticketing,vehicle dispatching,and passenger flow control during rail transit operations in China have been improving over the years.Smart city construction and intelligent management models has also been increasingly emphasized with the rapid development of information and internet technology.Therefore,it is essential to conduct relevant research and discussions to improve the overall efficiency and quality of urban rail transit operation and management.This article provides an overview of smart city rail transit operation and management informatization,the principles of construction,and the functions of smart city rail transit operation and management informatization.Additionally,it discusses the strategies for the construction of smart city rail transit operation and management information and its development prospects.展开更多
In the groundbreaking study “The Contribution of AI-powered Mobile Apps to Smart City Ecosystems,” authored by Zaki Ali Bayashot, the transformative role of artificial intelligence (AI) in urban development is metic...In the groundbreaking study “The Contribution of AI-powered Mobile Apps to Smart City Ecosystems,” authored by Zaki Ali Bayashot, the transformative role of artificial intelligence (AI) in urban development is meticulously examined. This comprehensive research delineates the multifaceted ways in which AI-powered mobile applications can significantly enhance the efficiency, sustainability, and livability of urban environments, marking a pivotal step towards the realization of smart cities globally. Bayashot meticulously outlines the critical areas where AI-powered apps offer unprecedented advantages, including urban mobility, public safety, energy management, and environmental monitoring. By leveraging AI’s capabilities, these applications not only streamline city operations but also foster a more sustainable interaction between city dwellers and their environment. The paper emphasizes the importance of data-driven decision-making in urban planning, showcasing how AI analytics can predict and mitigate traffic congestion, optimize energy consumption, and enhance emergency response strategies. The author also explores the social implications of AI in urban settings, highlighting the potential for these technologies to bridge the gap between government entities and citizens. Through engaging case studies, Bayashot demonstrates how participatory governance models, enabled by AI apps, can promote transparency, accountability, and citizen engagement in urban management. A significant contribution of this research is its focus on the challenges and opportunities presented by the integration of AI into smart city ecosystems. Bayashot discusses the technical, ethical, and privacy concerns associated with AI applications, advocating for a balanced approach that ensures technological advancements do not come at the expense of civil liberties. The study calls for robust regulatory frameworks to govern the use of AI in public spaces, emphasizing the need for ethical AI practices that respect privacy and promote inclusivity. Furthermore, Bayashot’s research underscores the necessity of cross-disciplinary collaboration in the development and implementation of AI technologies in urban contexts. By bringing together experts from information technology, urban planning, environmental science, and social sciences, the author argues for a holistic approach to smart city development. This interdisciplinary strategy ensures that AI applications are not only technologically sound but also socially and environmentally responsible. The paper concludes with a visionary outlook on the future of smart cities, posited on the seamless integration of AI technologies. Bayashot envisions a world where AI-powered mobile apps not only facilitate smoother urban operations but also empower citizens to actively participate in the shaping of their urban environments. This research serves as a critical call to action for policymakers, technologists, and urban planners to embrace AI as a tool for creating more sustainable, efficient, and inclusive cities. By presenting a detailed analysis of the current state of AI in urban development, coupled with practical insights and forward-looking recommendations, “The Contribution of AI-powered Mobile Apps to Smart City Ecosystems” stands as a seminal work that is poised to inspire and guide the evolution of urban landscapes worldwide. Its comprehensive exploration of the subject matter, combined with its impactful conclusions, make it a must-read for anyone involved in the field of smart city development, AI technology, or urban policy-making.展开更多
A smart city incorporates infrastructure methods that are environmentally responsible,such as smart communications,smart grids,smart energy,and smart buildings.The city administration has prioritized the use of cuttin...A smart city incorporates infrastructure methods that are environmentally responsible,such as smart communications,smart grids,smart energy,and smart buildings.The city administration has prioritized the use of cutting-edge technology and informatics as the primary strategy for enhancing service quality,with energy resources taking precedence.To achieve optimal energy management in themultidimensional system of a city tribe,it is necessary not only to identify and study the vast majority of energy elements,but also to define their implicit interdependencies.This is because optimal energy management is required to reach this objective.The lighting index is an essential consideration when evaluating the comfort indicators.In order to realize the concept of a smart city,the primary objective of this research is to create a system for managing and monitoring the lighting index.It is possible to identify two distinct phaseswithin the intelligent system.Once data collection concludes,the monitoring system will be activated.In the second step,the operation of the control system is analyzed and its effect on the performance of the numerical model is determined.This evaluation is based on the proposed methodology.The optimized resultswere deemed satisfactory because they maintained the brightness index value(79%)while consuming less energy.The intelligent implementation system generated satisfactory outcomes,which were observed 1.75 times on average.展开更多
Computational intelligence(CI)is a group of nature-simulated computationalmodels and processes for addressing difficult real-life problems.The CI is useful in the UAV domain as it produces efficient,precise,and rapid ...Computational intelligence(CI)is a group of nature-simulated computationalmodels and processes for addressing difficult real-life problems.The CI is useful in the UAV domain as it produces efficient,precise,and rapid solutions.Besides,unmanned aerial vehicles(UAV)developed a hot research topic in the smart city environment.Despite the benefits of UAVs,security remains a major challenging issue.In addition,deep learning(DL)enabled image classification is useful for several applications such as land cover classification,smart buildings,etc.This paper proposes novel meta-heuristics with a deep learning-driven secure UAV image classification(MDLS-UAVIC)model in a smart city environment.Themajor purpose of the MDLS-UAVIC algorithm is to securely encrypt the images and classify them into distinct class labels.The proposedMDLS-UAVIC model follows a two-stage process:encryption and image classification.The encryption technique for image encryption effectively encrypts the UAV images.Next,the image classification process involves anXception-based deep convolutional neural network for the feature extraction process.Finally,shuffled shepherd optimization(SSO)with a recurrent neural network(RNN)model is applied for UAV image classification,showing the novelty of the work.The experimental validation of the MDLS-UAVIC approach is tested utilizing a benchmark dataset,and the outcomes are examined in various measures.It achieved a high accuracy of 98%.展开更多
Smart city refers to the information system with Intemet of things and cloud computing as the core tec hnology and government management and industrial development as the core content,forming a large scale,heterogeneo...Smart city refers to the information system with Intemet of things and cloud computing as the core tec hnology and government management and industrial development as the core content,forming a large scale,heterogeneous and dynamic distributed Internet of things environment between different Internet of things.There is a wide demand for cooperation between equipment and management institutions in the smart city.Therefore,it is necessary to establish a trust mechanism to promote cooperation,and based on this,prevent data disorder caused by the interaction between honest terminals and malicious temminals.However,most of the existing research on trust mechanism is divorced from the Internet of things environment,and does not consider the characteristics of limited computing and storage capacity and large differences of Internet of hings devices,resuling in the fact that the research on abstract trust trust mechanism cannot be directly applied to the Internet of things;On the other hand,various threats to the Internet of things caused by security vulnerabilities such as collision attacks are not considered.Aiming at the security problems of cross domain trusted authentication of Intelligent City Internet of things terminals,a cross domain trust model(CDTM)based on self-authentication is proposed.Unlike most trust models,this model uses self-certified trust.The cross-domain process of internet of things(IoT)terminal can quickly establish a trust relationship with the current domain by providing its trust certificate stored in the previous domain interaction.At the same time,in order to alleviate the collision attack and improve the accuracy of trust evaluation,the overall trust value is calculated by comprehensively considering the quantity weight,time attenuation weight and similarity weight.Finally,the simulation results show that CDTM has good anti collusion attack ability.The success rate of malicious interaction will not increase significantly.Compared with other models,the resource consumption of our proposed model is significantly reduced.展开更多
The smart city comprises various infrastructures,including health-care,transportation,manufacturing,and energy.A smart city’s Internet of Things(IoT)environment constitutes a massive IoT environment encom-passing num...The smart city comprises various infrastructures,including health-care,transportation,manufacturing,and energy.A smart city’s Internet of Things(IoT)environment constitutes a massive IoT environment encom-passing numerous devices.As many devices are installed,managing security for the entire IoT device ecosystem becomes challenging,and attack vectors accessible to attackers increase.However,these devices often have low power and specifications,lacking the same security features as general Information Technology(IT)systems,making them susceptible to cyberattacks.This vulnerability is particularly concerning in smart cities,where IoT devices are connected to essential support systems such as healthcare and transportation.Disruptions can lead to significant human and property damage.One rep-resentative attack that exploits IoT device vulnerabilities is the Distributed Denial of Service(DDoS)attack by forming an IoT botnet.In a smart city environment,the formation of IoT botnets can lead to extensive denial-of-service attacks,compromising the availability of services rendered by the city.Moreover,the same IoT devices are typically employed across various infrastructures within a smart city,making them potentially vulnerable to similar attacks.This paper addresses this problem by designing a defense process to effectively respond to IoT botnet attacks in smart city environ-ments.The proposed defense process leverages the defense techniques of the MITRE D3FEND framework to mitigate the propagation of IoT botnets and support rapid and integrated decision-making by security personnel,enabling an immediate response.展开更多
China is in a process of urbanization and is aiming at a type of people-centered urbanization. The main purpose of developing a "smart city" is to help this type urbanization and to serve the people of the city. Fro...China is in a process of urbanization and is aiming at a type of people-centered urbanization. The main purpose of developing a "smart city" is to help this type urbanization and to serve the people of the city. From 2012 to 2015, China has chosen more than 300 cities or towns to be national pilot "smart cities." These pilot smart cities are located in more than 30 provinces around China, which differ greatly in thousands ways. So we advocated "One City One Policy". In 2012, MOHURD announced 90 cities as first batch of pilot smart cities. After three years, some pilot cities achieved great progress. This paper introduces five example cities (including town, district) as five different models of China' s smart city development. They are- Guilin city; Yunlong demonstration zone; Panyu District; Yangling Agricultural Hi-tech Industries Demonstration Zone; Lecong town. This paper also introduces our standardization work on smart city field at present.展开更多
Smart City Healthcare(SHC2)system is applied in monitoring the patient at home while it is also expected to react to their needs in a timely manner.The system also concedes the freedom of a patient.IoT is a part of th...Smart City Healthcare(SHC2)system is applied in monitoring the patient at home while it is also expected to react to their needs in a timely manner.The system also concedes the freedom of a patient.IoT is a part of this system and it helps in providing care to the patients.IoTbased healthcare devices are trustworthy since it almost certainly recognizes the potential intensifications at very early stage and alerts the patients and medical experts to such an extent that they are provided with immediate care.Existing methodologies exhibit few shortcomings in terms of computational complexity,cost and data security.Hence,the current research article examines SHC2 security through LightWeight Cipher(LWC)with Optimal S-Box model in PRESENT cipher.This procedure aims at changing the sub bytes in which a single function is connected with several bytes’information to upgrade the security level through Swam optimization.The key contribution of this research article is the development of a secure healthcare model for smart city using SHC2 security via LWC and Optimal S-Box models.The study used a nonlinear layer and single 4-bit S box for round configuration after verifying SHC2 information,constrained by Mutual Authentication(MA).The security challenges,in healthcare information systems,emphasize the need for a methodology that immovably concretes the establishments.The methodology should act practically,be an effective healthcare framework that depends on solidarity and adapts to the developing threats.Healthcare service providers integrated the IoT applications and medical services to offer individuals,a seamless technology-supported healthcare service.The proposed SHC^(2) was implemented to demonstrate its security levels in terms of time and access policies.The model was tested under different parameters such as encryption time,decryption time,access time and response time inminimum range.Then,the level of the model and throughput were analyzed by maximum value i.e.,50Mbps/sec and 95.56%for PRESENT-Authorization cipher to achieve smart city security.The proposed model achieved better results than the existing methodologies.展开更多
The present trends in smart world reflects the extensive use of limited resources through information and communication technology.The limited resources like space,mobility,energy,etc.,have been consumed rigorously to...The present trends in smart world reflects the extensive use of limited resources through information and communication technology.The limited resources like space,mobility,energy,etc.,have been consumed rigorously towards creating optimized but smart instances.Thus,a new concept of IoT integrated smart city vision is yet to be proposed which includes a combination of systems like noise and air loss monitoring,web monitoring and fire detection systems,smart waste bin systems,etc.,that have not been clearly addressed in the previous researches.This paper focuses on developing an effective system for possible monitoring of losses,traffic management,thus innovating smart city at large with digitalized and integrated systems and software for fast and effective implementations.In our proposed system,a real time data analysis is performed.These data are collected by various sensors to analyze different factors that are responsible for such losses.The proposed work is validated on a real case study.展开更多
A novel initiative in providing advanced civic amenities is the idea of smart city driven by the lnternet of Things. Owing to a lack of consensus regarding what constitutes a smart city, diverse smart city architectur...A novel initiative in providing advanced civic amenities is the idea of smart city driven by the lnternet of Things. Owing to a lack of consensus regarding what constitutes a smart city, diverse smart city architectures have been proposed. However, it is observed that adequate consideration is not given to the most important element of a smart city i.e. its people. In our opinion, energy efficient technologically driven city does not necessarily lead to a smart city. Ethics, tradition and law form essential ingredients of complex social palette that cannot be ignored. In this work we propose Ethics-Aware Object-Oriented Smart City Architecture (EOSCA) that has two distinguishing features. Firstly, we propose an object oriented layered architecture where an object represents an abstraction of a real world thing along with requisite security and ethics parameters. Secondly, we propose to integrate socio-cultural and ethical aspects within the smart city architecture by dedicating a separate ethics layer. Such enhancement not only addresses the challenge of privacy and security of a smart city, but also makes it people friendly by incorporating ethics. Such measures would facilitate social acceptance of smart city paradigm and augment its economic value.展开更多
The world is rapidly changing with the advance of information technology.The expansion of the Internet of Things(IoT)is a huge step in the development of the smart city.The IoT consists of connected devices that trans...The world is rapidly changing with the advance of information technology.The expansion of the Internet of Things(IoT)is a huge step in the development of the smart city.The IoT consists of connected devices that transfer information.The IoT architecture permits on-demand services to a public pool of resources.Cloud computing plays a vital role in developing IoT-enabled smart applications.The integration of cloud computing enhances the offering of distributed resources in the smart city.Improper management of security requirements of cloud-assisted IoT systems can bring about risks to availability,security,performance,condentiality,and privacy.The key reason for cloud-and IoT-enabled smart city application failure is improper security practices at the early stages of development.This article proposes a framework to collect security requirements during the initial development phase of cloud-assisted IoT-enabled smart city applications.Its three-layered architecture includes privacy preserved stakeholder analysis(PPSA),security requirement modeling and validation(SRMV),and secure cloud-assistance(SCA).A case study highlights the applicability and effectiveness of the proposed framework.A hybrid survey enables the identication and evaluation of signicant challenges.展开更多
The paper investigates a few of the major areas of the next generation technological advancement,“smart city planning concept”.The areas that the paper focuses are vehicle to grid(V2G),sun to vehicle(S2V),and vehicl...The paper investigates a few of the major areas of the next generation technological advancement,“smart city planning concept”.The areas that the paper focuses are vehicle to grid(V2G),sun to vehicle(S2V),and vehicle to infrastructure(V2I).For the bi-directional crowd energy single entity concept,V2G and building to grid(B2G)are the primary parts of distributed renewable generation(DRG)under smart living.This research includes an in-depth overview of this three major areas.Next,the research conducts a case analysis of V2G,S2V,and V2I along with their possible limitations in order to find out the novel solutions for future development both for academia and industry levels.Lastly,few possible solutions have been proposed to minimize the limitations and to develop the existing system for future expansion.展开更多
Smart cities improve the quality of life of people by utilizing the benefits of Information and communication technology(ICT)and the Internet of things(IoT).The applications of the smart city often rely on the cloud f...Smart cities improve the quality of life of people by utilizing the benefits of Information and communication technology(ICT)and the Internet of things(IoT).The applications of the smart city often rely on the cloud for services.No doubt cloud provides an ample amount of resources as a service but still it has limitations in terms of unreliable latency,mobility,and location awareness due to their multi-hop distance from the IoT devices.Fog computing avoids these limitations by providing services nearer to the edges.In this work we investigate the already proposed IoT-Fog based application specific smart city architectures and review them based on scalability,heterogeneity,mobility,energy conservation,latency,and security.Additionally,we discuss the applications and highlight the challenges that fog computing faces.We also present a case study of a smart city scenario with multiple applications of IoT.展开更多
The year of 2013 is considered the first year of smart city in China. With the development of informationization and urbanization in China, city diseases(traffic jam, medical problem and unbalanced education) are more...The year of 2013 is considered the first year of smart city in China. With the development of informationization and urbanization in China, city diseases(traffic jam, medical problem and unbalanced education) are more and more apparent. Smart city is the key to solving these diseases. This paper presents the overall smart city development in China in term of market scale and development stages, the technology standards, and industry layout. The paper claims that the issues and challenges facing smart city development in China and proposes to make polices to support smart city development.展开更多
This paper expounds the origin of urban operational coordination problem in historical setting, points out that operational coordination problem is essential to cities, induces the major challenges and opportunities f...This paper expounds the origin of urban operational coordination problem in historical setting, points out that operational coordination problem is essential to cities, induces the major challenges and opportunities for urban operating coordination at present, and takes IBM Intelligent Operation Center as example to illustrate the typical solutions with the detailed case study of the Intelligent Operation Center in Rio de Janerio.展开更多
Taking Taiyuan City as the research object,this paper sorts out the problems in smart city construction from four aspects,and based on the analysis of their deep-seated reasons,combined with the practice and developme...Taking Taiyuan City as the research object,this paper sorts out the problems in smart city construction from four aspects,and based on the analysis of their deep-seated reasons,combined with the practice and development trend of Taiyuan City’s smart city construction,4 items have been put forward.Strong operability countermeasures and suggestions:strengthen the top-level design,clarify the construction ideas;formulate preferential investment policies to solve the capital dilemma;give full play to geographical advantages,clarify the focus of construction,etc.展开更多
基金Guangdong Basic and Applied Basic Research Foundation under Grant No.2024A1515012485in part by the Shenzhen Fundamental Research Program under Grant JCYJ20220810112354002.
文摘This paper addresses the problem of predicting population density leveraging cellular station data.As wireless communication devices are commonly used,cellular station data has become integral for estimating population figures and studying their movement,thereby implying significant contributions to urban planning.However,existing research grapples with issues pertinent to preprocessing base station data and the modeling of population prediction.To address this,we propose methodologies for preprocessing cellular station data to eliminate any irregular or redundant data.The preprocessing reveals a distinct cyclical characteristic and high-frequency variation in population shift.Further,we devise a multi-view enhancement model grounded on the Transformer(MVformer),targeting the improvement of the accuracy of extended time-series population predictions.Comparative experiments,conducted on the above-mentioned population dataset using four alternate Transformer-based models,indicate that our proposedMVformer model enhances prediction accuracy by approximately 30%for both univariate and multivariate time-series prediction assignments.The performance of this model in tasks pertaining to population prediction exhibits commendable results.
文摘To address air pollution and offer a convenient and comfortable living environment,the Chinese government launched a smart city pilot(SCP)project in 2012,accompanied by a comprehensive set of environmental and energy-related laws and regulations.Although academic interest in smart cities has surged,there remains a notable gap in empirical research exploring the economic,environmental,and energy effects of such initiatives.Taking 232 prefecture-level cities from 2003 to 2017 as research subjects,this study measures energy effi‐ciency by using energy consumption per unit of GDP and adopts a difference-in-differences(DID)analysis to investigate the impact of SCPs on energy efficiency.The empirical results indicate that SCPs improved energy efficiency by promoting urban technological innovation capabilities and green total factor productivity,and this effect was more pronounced in cities that were more dependent on traditional fossil fuel energy sources and had more developed fiscal and financial levels.Studying the impact of smart city construction on energy utilization efficiency in developing countries,such as China,is not only significantly enlightening for China’s green and low-carbon transition but also provides reference opinions for constructing smart cities and the path to enhancing energy efficiency in other developing countries.The findings provide valuable insights into the global development of smart cities,urban sustainability,and high-quality economic growth.
文摘This study investigated the integration of geospatial technologies within smart city frameworks to achieve the European Union’s climate neutrality goals by 2050. Focusing on rapid urbanization and escalating climate challenges, the research analyzed how smart city frameworks, aligned with climate neutrality objectives, leverage geospatial technologies for urban planning and climate action. The study included case studies from three leading European cities, extracting lessons and best practices in implementing Climate City Contracts across sectors like energy, transport, and waste management. These insights highlighted the essential role of EU and national authorities in providing technical, regulatory, and financial support. Additionally, the paper presented the application of a WEBGIS platform in Limassol Municipality, Cyprus, demonstrating citizen engagement and acceptance of the proposed geospatial framework. Concluding with recommendations for future research, the study contributed significant insights into the advancement of urban sustainability and the effectiveness of geospatial technologies in smart city initiatives for combating climate change.
文摘In recent years,all walks of life have begun to propose the construction of“smart cities”.It is hoped that the construction of“smart cities”can pro-mote the transformation and upgrading of urban development and make our cities prosperous and sustainable.In the future,urban construction is very likely to develop in the direction of intelligence and intelligence,and a scientific and effective understanding and objective evaluation of the devel-opment status of China’s smart cities will be conducive to the planning and design of China’s smart cities in the new era,formulate scientific construc-tion policies,and strengthen the supervision and guidance of construction.At present,as far as China is concerned,the urbanization process is accel-erating,the urbanization rate is increasing year by year,and the level of urbanization has increased significantly,and people are beginning to think about how to better combine technology and services to serve the people.Smart cities,as one of the concerns,may be able to better solve this kind of problem.
文摘Rail transit is considered one of the safest and most efficient modes of transportation.Ticketing,vehicle dispatching,and passenger flow control during rail transit operations in China have been improving over the years.Smart city construction and intelligent management models has also been increasingly emphasized with the rapid development of information and internet technology.Therefore,it is essential to conduct relevant research and discussions to improve the overall efficiency and quality of urban rail transit operation and management.This article provides an overview of smart city rail transit operation and management informatization,the principles of construction,and the functions of smart city rail transit operation and management informatization.Additionally,it discusses the strategies for the construction of smart city rail transit operation and management information and its development prospects.
文摘In the groundbreaking study “The Contribution of AI-powered Mobile Apps to Smart City Ecosystems,” authored by Zaki Ali Bayashot, the transformative role of artificial intelligence (AI) in urban development is meticulously examined. This comprehensive research delineates the multifaceted ways in which AI-powered mobile applications can significantly enhance the efficiency, sustainability, and livability of urban environments, marking a pivotal step towards the realization of smart cities globally. Bayashot meticulously outlines the critical areas where AI-powered apps offer unprecedented advantages, including urban mobility, public safety, energy management, and environmental monitoring. By leveraging AI’s capabilities, these applications not only streamline city operations but also foster a more sustainable interaction between city dwellers and their environment. The paper emphasizes the importance of data-driven decision-making in urban planning, showcasing how AI analytics can predict and mitigate traffic congestion, optimize energy consumption, and enhance emergency response strategies. The author also explores the social implications of AI in urban settings, highlighting the potential for these technologies to bridge the gap between government entities and citizens. Through engaging case studies, Bayashot demonstrates how participatory governance models, enabled by AI apps, can promote transparency, accountability, and citizen engagement in urban management. A significant contribution of this research is its focus on the challenges and opportunities presented by the integration of AI into smart city ecosystems. Bayashot discusses the technical, ethical, and privacy concerns associated with AI applications, advocating for a balanced approach that ensures technological advancements do not come at the expense of civil liberties. The study calls for robust regulatory frameworks to govern the use of AI in public spaces, emphasizing the need for ethical AI practices that respect privacy and promote inclusivity. Furthermore, Bayashot’s research underscores the necessity of cross-disciplinary collaboration in the development and implementation of AI technologies in urban contexts. By bringing together experts from information technology, urban planning, environmental science, and social sciences, the author argues for a holistic approach to smart city development. This interdisciplinary strategy ensures that AI applications are not only technologically sound but also socially and environmentally responsible. The paper concludes with a visionary outlook on the future of smart cities, posited on the seamless integration of AI technologies. Bayashot envisions a world where AI-powered mobile apps not only facilitate smoother urban operations but also empower citizens to actively participate in the shaping of their urban environments. This research serves as a critical call to action for policymakers, technologists, and urban planners to embrace AI as a tool for creating more sustainable, efficient, and inclusive cities. By presenting a detailed analysis of the current state of AI in urban development, coupled with practical insights and forward-looking recommendations, “The Contribution of AI-powered Mobile Apps to Smart City Ecosystems” stands as a seminal work that is poised to inspire and guide the evolution of urban landscapes worldwide. Its comprehensive exploration of the subject matter, combined with its impactful conclusions, make it a must-read for anyone involved in the field of smart city development, AI technology, or urban policy-making.
文摘A smart city incorporates infrastructure methods that are environmentally responsible,such as smart communications,smart grids,smart energy,and smart buildings.The city administration has prioritized the use of cutting-edge technology and informatics as the primary strategy for enhancing service quality,with energy resources taking precedence.To achieve optimal energy management in themultidimensional system of a city tribe,it is necessary not only to identify and study the vast majority of energy elements,but also to define their implicit interdependencies.This is because optimal energy management is required to reach this objective.The lighting index is an essential consideration when evaluating the comfort indicators.In order to realize the concept of a smart city,the primary objective of this research is to create a system for managing and monitoring the lighting index.It is possible to identify two distinct phaseswithin the intelligent system.Once data collection concludes,the monitoring system will be activated.In the second step,the operation of the control system is analyzed and its effect on the performance of the numerical model is determined.This evaluation is based on the proposed methodology.The optimized resultswere deemed satisfactory because they maintained the brightness index value(79%)while consuming less energy.The intelligent implementation system generated satisfactory outcomes,which were observed 1.75 times on average.
基金Deputyship for Research&Inno-vation,Ministry of Education in Saudi Arabia for funding this research work through the Project Number RI-44-0446.
文摘Computational intelligence(CI)is a group of nature-simulated computationalmodels and processes for addressing difficult real-life problems.The CI is useful in the UAV domain as it produces efficient,precise,and rapid solutions.Besides,unmanned aerial vehicles(UAV)developed a hot research topic in the smart city environment.Despite the benefits of UAVs,security remains a major challenging issue.In addition,deep learning(DL)enabled image classification is useful for several applications such as land cover classification,smart buildings,etc.This paper proposes novel meta-heuristics with a deep learning-driven secure UAV image classification(MDLS-UAVIC)model in a smart city environment.Themajor purpose of the MDLS-UAVIC algorithm is to securely encrypt the images and classify them into distinct class labels.The proposedMDLS-UAVIC model follows a two-stage process:encryption and image classification.The encryption technique for image encryption effectively encrypts the UAV images.Next,the image classification process involves anXception-based deep convolutional neural network for the feature extraction process.Finally,shuffled shepherd optimization(SSO)with a recurrent neural network(RNN)model is applied for UAV image classification,showing the novelty of the work.The experimental validation of the MDLS-UAVIC approach is tested utilizing a benchmark dataset,and the outcomes are examined in various measures.It achieved a high accuracy of 98%.
基金This paper was sponsored in part by Beijing Postdoctoral Research Foundation(No.2021-ZZ-077,No.2020-YJ-006)Chongqing Industrial Control System Security Situational Awareness Platform,2019 Industrial Internet Innovation and Development Project-Provincial Industrial Control System Security Situational Awareness Platform,Center for Research and Innovation in Software Engineering,School of Computer and Information Science(Southwest University,Chongqing 400175,China)Chongqing Graduate Education Teaching Reform Research Project(yjg203032).
文摘Smart city refers to the information system with Intemet of things and cloud computing as the core tec hnology and government management and industrial development as the core content,forming a large scale,heterogeneous and dynamic distributed Internet of things environment between different Internet of things.There is a wide demand for cooperation between equipment and management institutions in the smart city.Therefore,it is necessary to establish a trust mechanism to promote cooperation,and based on this,prevent data disorder caused by the interaction between honest terminals and malicious temminals.However,most of the existing research on trust mechanism is divorced from the Internet of things environment,and does not consider the characteristics of limited computing and storage capacity and large differences of Internet of hings devices,resuling in the fact that the research on abstract trust trust mechanism cannot be directly applied to the Internet of things;On the other hand,various threats to the Internet of things caused by security vulnerabilities such as collision attacks are not considered.Aiming at the security problems of cross domain trusted authentication of Intelligent City Internet of things terminals,a cross domain trust model(CDTM)based on self-authentication is proposed.Unlike most trust models,this model uses self-certified trust.The cross-domain process of internet of things(IoT)terminal can quickly establish a trust relationship with the current domain by providing its trust certificate stored in the previous domain interaction.At the same time,in order to alleviate the collision attack and improve the accuracy of trust evaluation,the overall trust value is calculated by comprehensively considering the quantity weight,time attenuation weight and similarity weight.Finally,the simulation results show that CDTM has good anti collusion attack ability.The success rate of malicious interaction will not increase significantly.Compared with other models,the resource consumption of our proposed model is significantly reduced.
基金supported by Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.2021-0-00493,5G Massive Next Generation Cyber Attack Deception Technology Development,60%)supported by Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.2021-0-01806,Development of Security by Design and Security Management Technology in Smart Factory,30%)this work was supported by the Gachon University Research Fund of 2023(GCU-202106330001%,10%).
文摘The smart city comprises various infrastructures,including health-care,transportation,manufacturing,and energy.A smart city’s Internet of Things(IoT)environment constitutes a massive IoT environment encom-passing numerous devices.As many devices are installed,managing security for the entire IoT device ecosystem becomes challenging,and attack vectors accessible to attackers increase.However,these devices often have low power and specifications,lacking the same security features as general Information Technology(IT)systems,making them susceptible to cyberattacks.This vulnerability is particularly concerning in smart cities,where IoT devices are connected to essential support systems such as healthcare and transportation.Disruptions can lead to significant human and property damage.One rep-resentative attack that exploits IoT device vulnerabilities is the Distributed Denial of Service(DDoS)attack by forming an IoT botnet.In a smart city environment,the formation of IoT botnets can lead to extensive denial-of-service attacks,compromising the availability of services rendered by the city.Moreover,the same IoT devices are typically employed across various infrastructures within a smart city,making them potentially vulnerable to similar attacks.This paper addresses this problem by designing a defense process to effectively respond to IoT botnet attacks in smart city environ-ments.The proposed defense process leverages the defense techniques of the MITRE D3FEND framework to mitigate the propagation of IoT botnets and support rapid and integrated decision-making by security personnel,enabling an immediate response.
文摘China is in a process of urbanization and is aiming at a type of people-centered urbanization. The main purpose of developing a "smart city" is to help this type urbanization and to serve the people of the city. From 2012 to 2015, China has chosen more than 300 cities or towns to be national pilot "smart cities." These pilot smart cities are located in more than 30 provinces around China, which differ greatly in thousands ways. So we advocated "One City One Policy". In 2012, MOHURD announced 90 cities as first batch of pilot smart cities. After three years, some pilot cities achieved great progress. This paper introduces five example cities (including town, district) as five different models of China' s smart city development. They are- Guilin city; Yunlong demonstration zone; Panyu District; Yangling Agricultural Hi-tech Industries Demonstration Zone; Lecong town. This paper also introduces our standardization work on smart city field at present.
文摘Smart City Healthcare(SHC2)system is applied in monitoring the patient at home while it is also expected to react to their needs in a timely manner.The system also concedes the freedom of a patient.IoT is a part of this system and it helps in providing care to the patients.IoTbased healthcare devices are trustworthy since it almost certainly recognizes the potential intensifications at very early stage and alerts the patients and medical experts to such an extent that they are provided with immediate care.Existing methodologies exhibit few shortcomings in terms of computational complexity,cost and data security.Hence,the current research article examines SHC2 security through LightWeight Cipher(LWC)with Optimal S-Box model in PRESENT cipher.This procedure aims at changing the sub bytes in which a single function is connected with several bytes’information to upgrade the security level through Swam optimization.The key contribution of this research article is the development of a secure healthcare model for smart city using SHC2 security via LWC and Optimal S-Box models.The study used a nonlinear layer and single 4-bit S box for round configuration after verifying SHC2 information,constrained by Mutual Authentication(MA).The security challenges,in healthcare information systems,emphasize the need for a methodology that immovably concretes the establishments.The methodology should act practically,be an effective healthcare framework that depends on solidarity and adapts to the developing threats.Healthcare service providers integrated the IoT applications and medical services to offer individuals,a seamless technology-supported healthcare service.The proposed SHC^(2) was implemented to demonstrate its security levels in terms of time and access policies.The model was tested under different parameters such as encryption time,decryption time,access time and response time inminimum range.Then,the level of the model and throughput were analyzed by maximum value i.e.,50Mbps/sec and 95.56%for PRESENT-Authorization cipher to achieve smart city security.The proposed model achieved better results than the existing methodologies.
文摘The present trends in smart world reflects the extensive use of limited resources through information and communication technology.The limited resources like space,mobility,energy,etc.,have been consumed rigorously towards creating optimized but smart instances.Thus,a new concept of IoT integrated smart city vision is yet to be proposed which includes a combination of systems like noise and air loss monitoring,web monitoring and fire detection systems,smart waste bin systems,etc.,that have not been clearly addressed in the previous researches.This paper focuses on developing an effective system for possible monitoring of losses,traffic management,thus innovating smart city at large with digitalized and integrated systems and software for fast and effective implementations.In our proposed system,a real time data analysis is performed.These data are collected by various sensors to analyze different factors that are responsible for such losses.The proposed work is validated on a real case study.
文摘A novel initiative in providing advanced civic amenities is the idea of smart city driven by the lnternet of Things. Owing to a lack of consensus regarding what constitutes a smart city, diverse smart city architectures have been proposed. However, it is observed that adequate consideration is not given to the most important element of a smart city i.e. its people. In our opinion, energy efficient technologically driven city does not necessarily lead to a smart city. Ethics, tradition and law form essential ingredients of complex social palette that cannot be ignored. In this work we propose Ethics-Aware Object-Oriented Smart City Architecture (EOSCA) that has two distinguishing features. Firstly, we propose an object oriented layered architecture where an object represents an abstraction of a real world thing along with requisite security and ethics parameters. Secondly, we propose to integrate socio-cultural and ethical aspects within the smart city architecture by dedicating a separate ethics layer. Such enhancement not only addresses the challenge of privacy and security of a smart city, but also makes it people friendly by incorporating ethics. Such measures would facilitate social acceptance of smart city paradigm and augment its economic value.
基金Taif University Researchers Supporting Project No.(TURSP-2020/126),Taif University,Taif,Saudi Arabia。
文摘The world is rapidly changing with the advance of information technology.The expansion of the Internet of Things(IoT)is a huge step in the development of the smart city.The IoT consists of connected devices that transfer information.The IoT architecture permits on-demand services to a public pool of resources.Cloud computing plays a vital role in developing IoT-enabled smart applications.The integration of cloud computing enhances the offering of distributed resources in the smart city.Improper management of security requirements of cloud-assisted IoT systems can bring about risks to availability,security,performance,condentiality,and privacy.The key reason for cloud-and IoT-enabled smart city application failure is improper security practices at the early stages of development.This article proposes a framework to collect security requirements during the initial development phase of cloud-assisted IoT-enabled smart city applications.Its three-layered architecture includes privacy preserved stakeholder analysis(PPSA),security requirement modeling and validation(SRMV),and secure cloud-assistance(SCA).A case study highlights the applicability and effectiveness of the proposed framework.A hybrid survey enables the identication and evaluation of signicant challenges.
文摘The paper investigates a few of the major areas of the next generation technological advancement,“smart city planning concept”.The areas that the paper focuses are vehicle to grid(V2G),sun to vehicle(S2V),and vehicle to infrastructure(V2I).For the bi-directional crowd energy single entity concept,V2G and building to grid(B2G)are the primary parts of distributed renewable generation(DRG)under smart living.This research includes an in-depth overview of this three major areas.Next,the research conducts a case analysis of V2G,S2V,and V2I along with their possible limitations in order to find out the novel solutions for future development both for academia and industry levels.Lastly,few possible solutions have been proposed to minimize the limitations and to develop the existing system for future expansion.
文摘Smart cities improve the quality of life of people by utilizing the benefits of Information and communication technology(ICT)and the Internet of things(IoT).The applications of the smart city often rely on the cloud for services.No doubt cloud provides an ample amount of resources as a service but still it has limitations in terms of unreliable latency,mobility,and location awareness due to their multi-hop distance from the IoT devices.Fog computing avoids these limitations by providing services nearer to the edges.In this work we investigate the already proposed IoT-Fog based application specific smart city architectures and review them based on scalability,heterogeneity,mobility,energy conservation,latency,and security.Additionally,we discuss the applications and highlight the challenges that fog computing faces.We also present a case study of a smart city scenario with multiple applications of IoT.
文摘The year of 2013 is considered the first year of smart city in China. With the development of informationization and urbanization in China, city diseases(traffic jam, medical problem and unbalanced education) are more and more apparent. Smart city is the key to solving these diseases. This paper presents the overall smart city development in China in term of market scale and development stages, the technology standards, and industry layout. The paper claims that the issues and challenges facing smart city development in China and proposes to make polices to support smart city development.
文摘This paper expounds the origin of urban operational coordination problem in historical setting, points out that operational coordination problem is essential to cities, induces the major challenges and opportunities for urban operating coordination at present, and takes IBM Intelligent Operation Center as example to illustrate the typical solutions with the detailed case study of the Intelligent Operation Center in Rio de Janerio.
基金This paper is a phased result of the project:Research on the Construction of Smart City in Shanxi Province in Big Data Era(Project n o.:2017041033-4).
文摘Taking Taiyuan City as the research object,this paper sorts out the problems in smart city construction from four aspects,and based on the analysis of their deep-seated reasons,combined with the practice and development trend of Taiyuan City’s smart city construction,4 items have been put forward.Strong operability countermeasures and suggestions:strengthen the top-level design,clarify the construction ideas;formulate preferential investment policies to solve the capital dilemma;give full play to geographical advantages,clarify the focus of construction,etc.